Rangeland Ecology & Management

Get reliable science

Less reliable water availability in the 21st century climate projections
Author
Kumar, Sanjiv
Lawrence, David M
Dirmeyer, Paul A
Sheffield, Justin
Publisher
Earth's Future
Publication Year
2014
Body

The temporal variability of river and soil water affects society at time scales ranging from hourly to decadal. The available water (AW), i.e., precipitation minus evapotranspiration, represents the total water available for runoff, soil water storage change, and ground water recharge. The reliability of AW is defined as the annual range of AW between local wet and dry seasons. A smaller annual range represents greater reliability and a larger range denotes less reliability. Here we assess the reliability of AW in the 21st century climate projections by 20 climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The multimodel consensus suggests less reliable AW in the 21st century than in the 20th century with generally decreasing AW in local dry seasons and increasing AW in local wet seasons. In addition to the canonical perspective from climate models that wet regions will get wetter, this study suggests greater dryness during dry seasons even in regions where the mean climate becomes wetter. Lower emission scenarios show significant advantages in terms of minimizing impacts on AW but do not eliminate these impacts altogether.
Summary

Modeling of future water availability predicts that wet regions become wetter and dry regions become drier, leading to an increasing likelihood of seasonal droughts and floods in regions where such vulnerability is already high.

Language
English
Resource Type
Text
Document Type
Journal Issue/Article
Journal Volume
2
Journal Number
3
Journal Pages
152-160
Journal Name
Earth's Future
Keywords
climate change
rainfall
water availability
climate projections
Droughts
CMIP5
Flood