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INTRODUCTION
Climate has a large impact on vegetation and animal production in northern Australia. The length of
the dry season, variable annual rainfall, extreme temperatures and high evaporation rates make
managing pastoral enterprises difficult. Seasonal climate forecasts based on the El Niño Southern
Oscillation (ENSO) can potentially be useful to graziers, particularly if forecasts can be issued with
long lead -times and blended with animal and pasture management practices. Previous studies have
shown large changes in rainfall (27 %) and larger changes in pasture growth (35 %) associated with
changes in the Southern Oscillation Index (SOI) (Park et al. 2001). These results indicate a potential
benefit in forecasting pasture growth compared to rainfall. This paper evaluates the potential use of
long lead seasonal forecasts using summer rainfall and pasture growth.

MATERIALS AND METHODS
Relationships of SOI and SST based seasonal forecast systems with summer rainfall (November to
March) and modelled pasture growth were assessed with monthly lead -times of 0 to 6 months for
Longreach and 40 other locations across the Mitchell grasslands of western Queensland using
AUSTRALIAN RAINMAN (Clewett et al. 1999). The period of analysis was November 1891 to
March 2002 (111 seasons). Three seasonal forecast systems were used: Average 3 month SOI (Clewett
et al. 1991), SOI Phases (Stone and Auliciems 1992) and SST 9 Phase (Drosdowsky 2002). A
concurrent analysis using Average SOI (November to March) was also assessed. Daily climate data
was sourced from the SILO data drill (Jeffrey et al. 2001) and estimates of summer pasture growth
were modelled using WinGRASP (McKeon et al. 1990). Modelled growth of Mitchell grass pastures
explains about 70% of the variability of actual pasture growth (Cobon, unpublished data). The same
pasture parameters were used for all sites, thus the only source of variation in pasture growth was the
climatic data. Strength of seasonal forecast relationships was measured by percent change in rainfall
and pasture growth (Park et al. 2001). The Kruskal-Wallis (KW) (Conover 1971) and cross - validated
Linear Error Probability Space (LEPS) continuous skill score (Potts et al. 1995) tests assessed the
statistical significance of SOI and SST relationships with rainfall and pasture growth. Statistical
significance was indicated if KW and LEPS were at least 0.9 and 7.0 respectively (LEPS significance
threshold - Clewett, unpublished data). Correlations of Average SOI with rainfall and pasture growth
were also calculated.

RESULTS
Mean summer rainfall for the 41 stations was 314 mm and highly variable (Coefficient of Variation,
53 %). Mean summer pasture growth was 1370 kg/ha and varied more than rainfall (C of V, 81 %). In
years with a negative average SOI during summer (22 seasons below -5) mean rainfall was 14%
lower, compared to all years. Conversely, when the SOI was positive (32 seasons above +5) the mean
rainfall was 27% higher. The average impact of ENSO was a change in mean rainfall of 21 %. Impacts
of ENSO on pasture growth were greater (31% on average) with a mean reduction of 28% when the
SOI was negative, and an increase of 34% when the SOI was positive. ENSO influenced rainfall and
pasture growth in the concurrent analysis when the Average SOI was used, however the influence
declined as lead -time increased (Figure 1). For example, the impact of ENSO was >10% at lead -times
of 0 to 3 months for rainfall and 0 to 5 months for pasture growth.

However, the apparent impacts of ENSO were only statistically significant for lead -times of 0 and 1
month at most locations (Figures 2 and 3). The results from the SST 9 Phase analysis showed few
stations with statistical significance (KW > 0.9) at 0, 1 and 2 months lead time (15, 2 and 12 stations
respectively), and therefore these results are excluded from Figures 2 and 3. Significant correlations
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existed between Average SOI and rainfall (0 and 1 month lead -time) or pasture growth (0 to 3 month
lead-time) at more than 37 locations (Figure 4).

DISCUSSION
Impacts of ENSO on rainfall ( >10% from 0 -3 months lead -time) and pasture growth ( >10% from 0 -5
months lead -time) were not statistically significant for most locations beyond a 1 month lead-time
using Average SOI or SOI Phases. SST Phase relationships were not significant beyond a 0 month
lead -time, which agrees with the 1 month lead-time/3 month seasonal analysis (Drosdowsky 2002) for
the summer season in this part of Australia. While ENSO had a bigger apparent impact on pasture
growth than rainfall for longer lead-times (5 versus 3 months), significance tests showed little
advantage in using modelled pasture growth over rainfall. However, correlations indicated an apparent
advantage in using the Average SOI to forecast pasture growth compared to rainfall (3 versus 1 month
lead - time). The interpretation of different statistical tests needs more work. The high inter -annual
variation in rainfall extrapolates to extreme inter- annual variation in pasture growth. Large differences
in rainfall between El Niño and La Nina summers were evident with greater differences in pasture
growth. However, highly variable data are antagonistic to statistical significance and so large impacts
that stretch to lead -times of 3 -5 months are not transferred to statistical significance beyond 1 month.

The spatial variability shows that when providing a forecast at a particular location it is important to
look at other sites around that location to ensure a similar forecast signal is evident. There are no
major geological features in the Mitchell grasslands that would explain major differences in climate
between neighboring locations. Therefore, if surrounding sites are similar there is a greater chance of
the outcome being real. Forecast lead -times of 5 months are important for graziers to better manage
climate variability. While the forecast systems tested in this study did not give an extended lead -time
beyond 1 month, other forecast systems involving climate signals with longer lead-times are currently
being developed.
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Figure 1. Percent change in mean rainfall and
pasture growth using a concurrent analysis and
various lead- times.
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igure 3b. Percent of locations with a LEPS
;core of at least 7 using the "Average SOI"
and "SOI Phases" forecast systems.
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Figure 2a. Median KW values of 41 locations
using the "Average SOI" and "SOI Phases"
forecast systems.
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Figure 3a. Percent of locations with a KW value of
at least 0.9 using the "Average SOI" and "SOI
Phases" forecast systems.
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Figure 4. Percent of locations with a significant
correlation (>0.156) using the "Average SOP" and
"SOI Phases ".
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