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ABSTRACT 

A three year microcosm experiment consisting of four C4 grass species, one C3 grass, 

and a C3 geophyte was set up to investigate production and water use efficiency of a 

grassland community (coastal Ngongoni veld) in response to increasing 

concentrations of atmospheric C02 and different levels of simulated rainfall. The 

Ngongoni grassland community is dominated by species that possess a C4 

photosynthetic pathway, predominantly of the NADP-me. Dominant C4 grass species 

irrespective of photosynthetic pathway include Andropogon appendiculatus, 

Eragrostis racemosa, Sprobolus pyramidalis, and Themeda triandra. Only one C3 

grass species, Alloteropsis semialata sub-species eckloniana, is common in this 

grassland community. There are also a few forbs. 

The experimental system was assembled in a greenhouse, where microcosms were 

arranged in three rows representing four randomly arranged treatment groups with 

four replicates per treatment. Community canopy development and phenology were 

studied qualitatively from the beginning to the end of each growing season. 

Community above-ground production was determined at end-of-year harvests in a 

manner that differentiated contributions of different species. Above-ground biomass 

of grass species was further sorted by components in order to illustrate how these 

influenced canopy structure and possibly competitive interactions. Changes in above­

ground biomass production of the grass species in the three years were used to infer 

species dominance changes in response to a factorial combination of CO2 and water 

treatments. Assessment of community water use was done by measurements of 

evapotranspiration using a weighing lysimeter, and by measurements of soil water 

content using a moisture probe. Fluxes of carbon and water vapour were also 

determined by canopy gas exchange in the second and third years of study. Leaf gas 

exchange measurements were performed at three intervals (beginning, middle and 

end) during the third year of study in order to investigate a correlation between 

photosynthesis and biomass production. Measurements done at the fmal harvest 

included total below ground biomass, distribution of roots with depth, and crown 

biomass (below-ground biomass could not be split into species-specific components). 
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In the first year, watering simulated a stochastic rainfall distribution typical of the site. 

Results after the first year showed a significant positive response of above ground 

production to elevated CO2, but only at rainfall values typical of the field site from 

which the community was derived (mean annual rainfall, MAR, 730 mm). There was 

no C02 effect on above-ground production at a rainfall treatment 20% lower than 

MAR (C02 x water treatment interaction p<O.OI). In the first year elevated CO2 

reduced community water use more at MAR than under dry conditions. A reduction in 

cumulative water use led to an increase in pot mass as a consequence of soil water 

accumulation in all water treatments. In the second year rainfall treatments were 

adjusted to MAR and MAR + 20% (wet), using regular application as opposed to 

stochastic application. Results of the second year showed that the C02 effect on 

community production was identical to that of the previous year under the MAR 

treatment. In the third year, a reduction in biomass production occurred in all 

treatments, and the main effects of CO2 and water treatments were not statistically 

significant. 

Responses of canopy structure to elevated CO2 treatment were characterised by higher 

production of community leaf biomass in upper canopy layers (height of about 40 cm 

and above) due to significant treatment effects. The taller grass species influenced 

responses of canopy structure the most. Among taller grasses, Sporobolus pyramidalis 

and Themeda triandra, were responsive to elevated C02 + MAR, and their leaf 

biomass in the 40-60 cm layer was equivalent to 50% of each of their leaf biomass in 

the dense basal layers (5-20 cm or 20-40 cm); while contributions of Alloteropsis 

semialata and Andropogon appendiculatus in the 40-60 cm layer were each no more 

than 10-15% of their respective contributions in the dense basal layers (5-20 cm or 

20-40 cm). There was a dense presence of leaf biomass in the bottom part of the 

canopy below 40 cm, and treatment effects in that part of the canopy were not 

statistically significant. Lack of statistical significance of treatment effects on the 

amount of leaf biomass in the basal layer of the canopy suggests that important 

functional processes that are successfully maintained by dense lower canopy may not 

be altered by elevated CO2. 

Responses of community phenology show that elevated CO2 caused early sprouting, 

early flowering and delayed senescence, even though the responses were species 
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specific, and sometimes dependent on water supply. Early sprouting occurred under 

elevated CO2 in all three years, and was further enhanced by a higher water supply 

(MAR and 120%MAR). Sprouting responses of the species was characterised by three 

groups, which categorise Themeda triandra as an early sprouter, Eragrostis racemosa 

and Sporobolus pyramidalis as intermediate, and Sporobolus pyramidalis, 

Andropogon appendiculatus and Alloteropsis semialata as late sprouters. The 

observed trends in sprouting are in contradiction with sprouting phenology of mixed 

grasslands, where cool-season C3 grass species sprout earlier than warm-season C4 

grass species. This may suggest a response to greenhouse conditions, especially less 

extreme night time temperatures. 

Elevated C02 reduced community evapotranspiration, and increased community 

water use efficiency. The highest recorded reduction in evapotranspiration was 10%. 

Reduction in evapotranspiration resulted in a significant increase in soil water in the 

rooting zone and underlying clay layer under elevated CO2 in both wet and MAR 

conditions. Soil water content was found to increase with soil depth. A reduction in 

community water use under elevated CO2 was consistently measured in all three years 

by all methods of assessment used. 

Canopy gas exchange data were in agreement with community production and water 

use data in the sense that carbon gain was 20-30% higher under elevated CO2, and 

water vapour flux was reduced under elevated C02. Results of leaf gas exchange 

measurements in the third year showed higher rates photosynthesis in the C4 grass 

species than the C3 grass. A reduction in stomatal conductance was observed both in 

the C3 and C4 grass species. 

The geophyte (Eriospermum mackenii) did not show a response to treatments in the 

above-ground organs in the first year. In the second and third years, above-ground 

biomass increased under both treatments, but the increase in the second year was 

higher than the increase in the third year, possibly indicating an acclimation response. 

Elevated CO2 caused a 6-11 % increase in the dry mass of below-ground organs of the 

geophyte from the time of planting to fmal harvest. 
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Generally, grass species most responsive to the elevated CO2 treatment possessed the 

C4 photosynthetic pathway. The C3 grass - Alloteropsis semialata, showed non­

responsiveness to elevated CO2 relative to the C4 grasses, as indicated by delayed 

sprouting at beginning of growing season, an earlier onset of senescence, and lower 

above-ground biomass at harvest. The results suggest that elevated C02 may cause 

changes in community composition of wann-season vs. cool season grasses where the 

two types co-occur. These results will be useful in predictive modeling of future 

impacts of elevated C02 on C4 grassland composition and catchment yield, 

particularly because South African C4 grasslands cover major catchments and occur in 

areas otherwise suitable for C3 vegetation. 
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Chapter 1 Introduction 

CHAPTERl 

INTRODUCTION 

1.1. Increasing atmospheric CO2 concentrations and global climate change 

The turn of the twenty ftrst century is experiencing exceptionally high increases in the 

concentration of atmospheric carbon dioxide. Data from polar ice cores show that in 

the middle of the nineteenth century, before the industrial revolution, the 

concentration of carbon dioxide in the atmosphere was 275 ± 10 ppm (Neftel et al. 

1985). Additional data collected at Mauna Loa Observatory show an indisputable 

increase from 315 ppm in 1958 to 350 ppm in 1988 (Keeling et al. 1989) and a 

continued rise since then. Although C02 concentrations have changed over geological 

time scales, present changes are occurring at a rate higher than at any time over the 

last 160 000 years BP (Bamola et al. 1987), and even more rapidly than the changes 

that occurred 3 million years ago (Houghton et al. 2001). The principal sources of 

increasing levels of atmospheric CO2 are anthropogenic activities that release carbon 

from major reservoirs (Keepin et al. 1986). The increases in CO2 and other 

greenhouse gases are expected to cause global warming by increasing the absorbance 

of long-wave radiation by the lower atmosphere (IPCC, 1990). Even though some 

suggestions indicated that global warming could be negated by planetary cooling 

forces that are intensifted by warmer temperatures and by biological processes that are 

enhanced by rising levels of atmospheric CO2 (Idso 1998), it has become clear that 

the planet has warmed by 0.5 °c in the past century (IPCC, 1990), and models (IPCC, 

1995) suggest that it will continue to warm well beyond the year 2100. CO2 on the 

other hand is a substrate for photosynthesis, and elevated CO2 will affect natural 

ecosystems by its direct impact on vegetation. 

This introductory chapter will discuss some of the commonly reported impacts of 

elevated CO2 on grassland ecosystems, particularly C4-dominated grasslands. A brief 

outline of major studies on grassland ecosystems will be given in section 1.2., and 

further reference will be made to the content of section 1.2 in greater detail under 

section 1.5 where a speciftc account will tease out differences in response between C3 

and C4 grassland vegetation. There will be a section on advantages conferred by the 

C4 photosynthetic pathway on C4 species, and the impacts of elevated CO2 on those 
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benefits, and whether responses to elevated CO2 will be different for the C4 functional 

subtypes. Lastly, responses of C4-dominated grassland communities to elevated CO2 

will be discussed in the South African context. 

1.2. Increasing atmospheric CO2 concentrations and grasslands 

Responses of grassland communities and ecosystems to elevated CO2 have been 

studied for a variety of climates and habitats, but the majority of studies have been 

conducted on northern hemisphere temperate grasslands, with very few studies done 

on African tropical and sub-tropical grasslands. Several ecosystem characteristics 

such as water flux, light regime, nutrients, temperature, the predominant mode of 

photosynthesis in dominant plant species (C3, C4, or CAM) vary among different 

grassland types, and all of these factors are important in how grassland ecosystems 

will respond to elevated CO2 (Wilsey et al. 1997). 

The first running grassland ecosystem experiment looking at the effects of elevated 

C02 on key processes that regulate ecosystem carbon metabolism, and also measuring 

the response of these effects on ecosystem carbon accumulation, was set up in a salt 

marsh in Chesapeake Bay, Maryland (Drake et al. 1989). The study site consisted of 

two monospecific stands (a C3 sedge community of Scirpus olneyi and a C4 grass 

community of Spartina patens), and a mixed community of Scirpus olneyi, Spartina 

patens and another C4 grass Distiehlis spieata, all exposed to elevated CO2 since 1987 

(Drake et al. 1989). Following one year of exposure to elevated CO2, there was a 

significant increase in above-ground biomass in the C3 sedge, and no significant 

treatment effects on above-ground biomass in the C4 grass community (Curtis et al. 

1989a). The C4 component of the mixed community also showed no measurable 

response of above-ground biomass to elevated CO2 (Curtis et al. 1989a). Production 

of the C3 sedge community was further enhanced by delayed senescence. That pattern 

of response in primary production was confirmed through seven years of CO2 

exposure (Drake et al. 1996). Elevated CO2 also increased annual net ecosystem CO2 

uptake throughout the first year in all three communities (Drake and Leadley 1991). 

Net ecosystem CO2 uptake was continually enhanced for seven years in the C3 sedge 

community under elevated CO2, but only for the first four years in the C4 grass 

community and in the mixed community only during the first, third, sixth and seventh 

years (Drake et al. 1996). 
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The second longest running grassland ecosystem study was initiated in a pristine 

tallgrass prairie in Manhattan, Kansas in 1989, on vegetation consisting of a mixture 

of C3 and C4 perennial species, with C4 grasses Andropogon geradii and Sorghastrum 

nutans as dominant species. The tallgrass prairie experiment involved a combination 

of experimental approaches, from measuring leaf water potential to whole-ecosystem 

gas exchange. The results show that a C4 tallgrass prairie exposed to elevated CO2 can 

sustain reduced water use, which in turn is sufficient to increase above- and below­

ground biomass production in years when water stress is frequent (Knapp et al. 1993a, 

Ham et al. 1995, Owensby et al. 1997). Improved water use efficiency conferred by 

elevated C02 on the tallgrass prairie is a result with profound implications, 

considering that production of that ecosystem is commonly limited by water 

availability (Owensby et al. 1969). Furthermore, improved water use efficiency in the 

tall grass prairie under elevated C02 is in agreement with one of the most purported 

effects of elevated CO2, which is enhanced water use efficiency as a consequence of 

reduced stomatal conductance (e.g. Chaves and Pereira, 1992; Morrison 1993; Wand 

et al. 1999). Elevated CO2 apparently had a greater impact on the production of C4 

grass species and C3 forbs than of the C3 grass species, and Owensby and co-workers 

(1993) partly attribute the non-responsiveness of C3 grasses to lack of grazing, which 

they suggest may have allowed taller C4 grasses to overtop the shorter C3 grass 

species. The results are exemplary in demonstrating that competitive advantages 

conferred upon C3 species (under elevated CO2) by the C3 photosynthetic pathway, do 

not override other environmental factors that govern plant competitive interactions. 

Another major ecosystem-level study is the Jasper Ridge annual grassland 

experiment undertaken since 1992 in California, to quantify the roles of ecosystem 

characteristics such as species composition, soil moisture, and nutrients, as well as 

ecosystem processes such as photosynthesis and evapotranspiration, in controlling 

ecosystem responses to elevated CO2 (Field et al. 1995). The study communities 

consist of single species field microcosms, and mixed species field microcosms, in 

addition to chambered and unchambered field plots of C3 grasses growing on 

serpentine soil and sandstone soil (Field et al. 1996). Elevated CO2 significantly 

enhanced productivity in both sandstone and serpentine communities, and 
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consequently enhanced ecosystem water use efficiency (WUE) of communities, even 

though there were no statistically significant C02 effects on evapotranspiration 

(Fredeen et al. 1995). Effect of CO2 on ecosystem gas exchange was statistically 

significant only in the serpentine community, but higher rates of ecosystem gas 

exchange were measured in the sandstone grassland compared to the serpentine 

grassland, suggesting that the response of above-ground production to elevated CO2 

may be dependent on grassland type in that ecosystem (Fredeen et al. 1995). Despite 

lack of statistically significant differences in evapotranspiration measured under 

ambient and elevated CO2 treatments in the sandstone grassland, slightly lower rates 

were measured under elevated C02, while evapotranspiration in the serpentine 

grassland showed no sensitivity to elevated CO2 (Fredeen et al. 1995). Elevated CO2 

had a strong effect on leaf level processes such as net CO2 assimilation, transpiration, 

stomatal conductance, instantaneous water use efficiency, and mid-day leaf water 

potential of the dominant species Avena barbata in sandstone grassland (Jackson et al. 

1994). Higher mid-day leaf water potential and lower stomatal conductance under 

elevated CO2 of the dominant species in the sandstone community (Jackson et al. 

1994), resulted in increased soil water availability at the ecosystem level (Frede en et 

al. 1996). Jackson et al. (1995) show that other notable effects of elevated CO2 are 

increased density of a late-season species such as the C3 grass Hemizonia congesta, 

and enhanced litter production. 

Other research groups around the world are pursuing ecosystem level studies to 

investigate impacts of elevated CO2 on other types of grasslands. Wilsey and co­

workers (1997) studied the response of grassland communities from three different 

ecosystems exposed to similar treatments of elevated CO2 with or without defoliation. 

The three ecosystems represented the African tropical grassland of Serengeti 

dominated by C4 species, a South American temperate grassland of Flooding Pampa 

dominated by a mixture of C3 and C4 species, and a North American temperate 

grassland at Yellowstone National Park dominated by C3 species. In the North 

American temperate grassland, elevated CO2 caused an increase in total biomass of 

crowns and roots (storage organs), and no effect on above-ground biomass. In the 

South American temperate grassland and East African tropical grasslands, there were 

no significant CO2 effects on either storage-organs or above-ground biomass. Lack of 

significant CO2 effects on above-ground biomass in species from any of the three 
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ecosystems were interpreted to imply no effect of C02 on the quality of forage. 

Wilsey et al. (1997) deduced that lack of interactive effect of C02 and defoliation 

suggested that herbivores will not affect the way grasses respond to elevated CO2 

under average nutrient conditions. 

A pioneer experiment investigating potential impacts of elevated CO2 on southern 

African C4 grass species started in 1994 at the National Botanical Institute in 

Kirstenbosch, Cape Town. The objective of that study was to investigate how carbon 

assimilation and allocation, growth, and morphological development of the 

representative southern African C4 grass species will be affected by elevated C02 

(Wand, 1999). A further objective was to formulate the potential direct and indirect 

impacts of rising atmospheric C02 on the future distribution and production of 

grasslands in southern Africa. At the time when that study was initiated, it was 

common perception that C4 grass species would not be responsive to elevated CO2, 

and that under elevated CO2, C4 grasses would be out-competed by their C3 

counterparts in communities where both co-occur. Wand and co-workers (1999) 

performed a critical assessment, using meta-analysis methods, of published literature 

on the physiological and growth responses of wild C4 vs. C3 species to elevated CO2. 

The analysis showed that elevated CO2 has a significant positive effect on plant water 

relations in both C3 and C4 grass species, as a consequence of reduced stomatal 

conductance (gs). These authors (Wand et al. 1999) also indicated that at the leaf 

level, greater carbohydrate accumulation and greater reductions in leaf nitrogen 

concentration in C3 species were the only patterns which significantly differentiated 

C3 from C4 responses, and constituted the only evidence for sink limitation. However, 

there were substantial differences between <;:3 and C4 species at the shoot level, which 

resulted from shoot allocation differences and effects on above-ground morphologies. 

Those differences, and other differences in photosynthetic pathway, might explain the 

tendency towards biomass response differences. 

The study described in this thesis forms part of the Climate Change Research 

Programme at the National Botanical Institute in Kirstenbosch, Cape Town, and was 

initiated in April 1998 to further understand community level responses to impacts of 

elevated C02 on South African C4-dominated SUbtropical grasslands, with specific 

emphasis on community production and water use. 
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1.3. C3 and C4 photosynthetic pathways and increasing atmospheric C02 

Plants that possess the C4 photosynthetic pathway evolved as a result of reductions in 

atmospheric C02 concentrations (Ehleringer et al. 1991), and are at present abundant 

in tropical, sub-tropical and temperate regions with warm-season rainfall (Ehleringer 

et al. 1997). It is interesting that the climatic variables that were important in the 

evolution of the C4 pathway, are the ones being altered anthropogeoically (Henderson 

et al 1995), and even more intriguing are the ecological implications of these climatic 

changes on the future of C4 grassland ecosystems. 

The C4 photosynthetic pathway serves to concentrate C02 in the bundle sheath cells, 

where the carbon fixing enzyme, ribulose-1,5-bisphosphate carboxylase oxygenase 

(rubisco) and the photosynthetic carbon reduction cycle are specifically located 

(pearcy and Ehleringer 1984). The CO2 concentrating mechanism in C4 species 

enables rubisco to function at C02 concentrations near saturation (:::::2000 III r'), which 

is about ten times greater than those experienced by rubisco in C3 species. 

Carboxylation in C3 plants is limited furthermore by photorespiration, such that at 

current ambient C02 concentrations the maximum rate of C02 fixation in leaves of C3 

species is about 20% of the maximum capacity of rubisco (Collatz 1977). 

Photo respiration consumes extra ATP and NADPH derived from the light reactions of 

photosynthesis, thus lowering the effective quantum yield of C02 fixation, that effect 

becoming more pronounced at higher temperatures (Ehleringer and Bjorkman, 1977). 

Although the quantum yield of C4 plants is independent of temperature, the CO2 

concentrating mechanism requires extra A TP derived from the light reactions. The 

extra energy required is associated with the regeneration of phosphoenolpyruvate by 

the C4 cycle in the mesophyll cells, thus reducing the potential quantum efficiency 

(Ehleringer and Bjorkman, 1977). These authors argue that under high C02, the 

quantum efficiency of CO2 fixation in C3 plants will be superior to that of C4 plants, 

and by implication, C4 species may not benefit from elevated CO2 as much C3 species 

under high irradiances. In an experiment undertaken to study the interactive growth 

effects between different levels of irradiance and elevated C02 on C4 and C3 grasses, 

Ghannoum et al. (1997) show that elevated CO2 enhances plant dry weight by 1.41 

and 1.71 times at both high and low light respectively in the C3 grass, and only by 

1.28 times at high light in the C4 grass. 
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The mechanisms of C4 plant responses to elevated C02 are not as well understood as 

those of C3 plants, especially at the leaf and single plant levels (Stitt, 1991). Elevated 

C0 2 increases photosynthetic assimilation in the C3 pathway (i) by decreasing 

photorespiration because of increased intercellular C02 concentration (Cj), and (ii) by 

increasing the rate of C02 fixation by rubisco (Stitt, 1991). A consequence of 

increased Cj is a reduction of stomatal conductance and concomitant water use 

efficiency. Another likely response mechanism of C3 species is reduced mitochondrial 

respiration under elevated C02 (Drake et. al. 1999), although this response is not 

unequivocal. There are suggestions that C4 species may be out-competed by C3 

species under elevated C02, even in regions otherwise favourable for C4 species 

(Collatz et. al. 1998). But then again, it would seem that the magnitude of C4 

responsiveness, especially in mixed C3/C4 communities, could depend on whether C3 

species do take advantage of elevated CO2 (Henderson et al. 1995). 

The nature of the C4 pathway confers physiological flexibility that is well suited to the 

ecological advantages associated with elevated C02 (Henderson et. al. 1995), which 

suggests that C4 species will do well under elevated C02. The purported physiological 

flexibility of the C4 pathway is attributed to, among other factors, co-ordinated 

compartmentalisation of metabolism (Henderson et. al. 1995). These authors argue 

that the elaborate specialisation of photosynthetic functions between the mesophyll 

and bundle sheath cells in C4 plants permits good regulations of metabolite transport 

and pool sizes both within and between cells. The close proximity of bundle sheath 

cells to the vascular system may support a higher capacity for sucrose translocation in 

C4 plants (Henderson et al. 1995), lack of which limits the capability of C3 plants to 

take advantage of elevated C02 (Stitt, 1991). Secondly, the C4 pathway confers water 

use efficiency under ambient atmospheric C02 concentrations because of a reduction 

in stomatal conductance (Henderson et al. 1995), and reports in the literature indicate 

that this benefit is further enhanced under elevated C02 concentrations (Knapp et al. 

1993b; Wand et al. 1999). Thirdly, C4 species use less rubisco to sustain high 

photosynthetic rates under ambient CO2 concentrations, and therefore the nitrogen use 

efficiency potential of the C4 pathway places C4 species at an advantage over C3 

species under elevated C02, and arguments on this suggestion are discussed below. 
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One of the critical arguments about whether C4 species will respond positively to 

elevated CO2 on the basis of nitrogen use efficiency is that if nitrogen is a limiting 

factor to plant growth under elevated CO2, the nitrogen use potential of the C4 

pathway could be lost because nitrogen deficiency reduces rubisco activity more than 

the activity of PEP carboxylase in C4 species, hence the rate of delivery of CO2 to the 

bundle sheath becomes faster than its fixation (Ghannoum and Conroy, 1998). C3 

species would be at an advantage if nitrogen is limiting to plant growth because the C3 

pathway uses less rubisco in elevated C02 due to the elimination of photorespiration 

(Stitt, 1991). The advantage of nitrogen use efficiency may fail to be sustained in 

either C3 or C4 species due to lack of sink strength, which in turn leads to 

accumulation of total non-structural carbohydrates and photosynthetic acclimation 

(Stitt, 1991). As a result, the capability of either C3 or C4 plants to take advantage of 

elevated C02 would be limited. Response mechanisms of C4 and C3 grasses are less 

clearly understood at canopy and ecosystem levels, and that is a major drawback in 

assessing whether grasslands have the potential to sequester carbon in the long-term. 

1.4. C4 subtypes and elevated CO2 

C4 photosynthetic subtypes are named according to the principal four-carbon acid 

(malate or aspartate) decarboxylating enzyme, and they are NAD-dependent malic 

enzyme (NAD-me), NADP-dependent malic enzyme (NADP-me), and 

phosphoenolpyruvate carboxykinase (PCK) (Hattersly and Watson 1992). Grass 

species that possess the NAD-me pathway are dominant in drier regions, while those 

that possess the NADP-me pathway are dominant in regions of higher precipitation 

(Ehleringer et al. 1997). The PCK photosynthetic sub-type is dominant in more arid 

regions than the NAD-me variant (Hattersly, 1983). Generally, there are slight 

differences in the quantum yields of the C4 grass subtypes that are often associated 

with the leakiness of CO2 in the bundle sheaths or lack of it. CO2 leakiness is 

considered an energy cost that is manifested in the quantum yield (pearcy and 

Ehleringer, 1984). The NADP-me subtype is purported to have the tightest bundle 

sheath cells, NAD-me the most leaky, and the PCK group is intermediate (Pearcy and 

Ehleringer, 1984). Those authors suggested that differences in leakiness between C4 

subtypes might be related to the conductance of the bundle sheath cells. 
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Subsequently, Henderson et al. (1995) hypothesised that levels of C02 leakiness could 

serve as predictors of the responses of C4 species to elevated CO2. This interesting 

hypothesis was by coincidence tested almost simultaneously by two research groups 

(LeCain and Morgan 1998, and Wand 1999), who further proposed that if higher 

bundle sheath cell wall conductance in the NAD-me subtype implies lower C02 

concentration in the bundle sheath cell, then the photosynthesis of species belonging 

to that subtype would be more responsive to elevated C02 than those belonging to 

NADP-me and PCK subtypes. Results of both studies did not support generalisations 

about gas exchange response of C4 grasses to elevated CO2 based on subtype, but they 

show that growth response of well watered NADP-me grasses to elevated C02 tends 

to be larger than of NAD-me subtypes, although not all species respond the same. In 

another study, Seneweera et al. (1998) found that elevated C02 ameliorates the effect 

of soil water deficit on the growth of a C4 NAD-me wild grass. At present, no 

conclusive generalisations can be made about the responsiveness of the different C4 

subtypes to elevated CO2. 

1.5. C4 grassland communities and their responses to elevated CO2 

Rigorous ecosystem-level studies on the responses of C4 vs. C3 grassland 

communities to elevated CO2 have been conducted on a mixed C4 and C3 salt marsh at 

Chesapeake Bay in Maryland (Curtis et. al. 1989a,b); a predominantly C4 tallgrass 

prairie at Kansas, Manhattan (Owensby et. al. 1993); an annual C3 grassland at Jasper 

Ridge, California (Field et al. 1996); and a shortgrass steppe in Colorado (Morgan et 

al. 2001). Other studies have been conducted in controlled environments using soil 

cores (Morgan et. al. 1994), or grasses planted from seed (Morgan et al. 1998; Le 

Cain and Morgan, 1998; Ghannoum et. al. 1997; 1998; Wand 1999). The experiment 

on the salt marsh is the longest running, and its initial findings indicated that elevated 

C02 has a relatively larger effect on C3 species than C4 species (Curtis et. al. 

1989a,b). Those results are in agreement with predictions based on differences in 

photosynthetic pathways, that C4 species will not respond due to their photosynthetic 

pathway - and this places them at a competitive disadvantage. The greatest response 

in C3 species was above-ground biomass production, which was stimulated only after 

mid-season, increasing thereafter (Curtis et. al. 1989a,b). However, as the absolute 

values of above-ground biomass increased, the relative stimulation by elevated CO2 

decreased (Arp et. al. 1993), indicating a short-term effect of elevated CO2 on above-
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ground biomass in C3 species which according to those authors coincided with a 

period of high temperature and drought. An important observation by Drake et al. 

(1996) is that generally, C3 species in the salt marsh responded better to elevated CO2 

during times of greatest stress in which C4 species were least productive. 

Findings of the tallgrass prairie experiment on the other hand, indicated that responses 

of C4 grass species to elevated C02 did not conform to predictions based on 

differences in photosynthetic pathways. Compared with ambient CO2 levels, elevated 

C02 increased total biomass and leaf area of C4 grass species, but not of C3 grass 

species, although the relative increase in biomass was greater below-ground than 

above-ground (Owensby et. al. 1993). The authors argued that the reduction in C3 

grasses can be attributed to lack of grazing, which allowed taller C4 grasses to quickly 

overtop the shorter C3 species. The taller C3 forbs in that study increased in basal 

cover under elevated CO2, supporting a suggestion that canopy responses to 

competition for light associated with CO2 enrichment may affect interspecific 

competition. Furthermore, a positive effect of elevated CO2 on biomass production of 

a dominant C4 grass species, Andropogon gerardii, was substantially greater in dry 

years than in wet years during the growing season (Owensby et. al. 1993). Such a 

response may be indicative of an increased competitive edge of C4 species over C3 

under elevated CO2. 

The positive response of C4 grass biomass production of the tallgrass prairie under 

elevated CO2 was accompanied by an improvement in plant water relations measured 

as increased leaf xylem pressure potentials (Knapp et. al. 1993a), associated with a 

reduction in stomatal conductance (Knapp et. al. 1993b). Maintenance of high leaf 

water potentials during periods of low water availability by plants growing in elevated 

CO2 improves water use efficiency, while high precipitation during growth in elevated 

CO2 has been shown to moderate the effect of water use efficiency on biomass 

production (Ham et. al. 1995). Those observations have led to speculation that any 

increases in production of C4 grasslands under elevated CO2 would be most apparent 

during dry periods (Hamerlynck et al. 1997). Data from another experiment (Hunt et. 

al. 1996), showed that elevated CO2-induced increase in biomass was greatest at an 

intermediate water level. 
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Increased water use efficiency in elevated CO2 is often attributed to either greater 

photosynthetic assimilation associated with high C02 availability or lower rates of 

transpiration resulting from decreased stomatal conductance, or a combination of the 

two. In their review, Tyree and Alexander (1993) proposed that a combination of the 

two factors, rather than each one singly produces increased water use efficiency, 

especially because lower stomatal conductance is more limiting to evapotranspiration 

than to assimilation. In the tallgrass prairie experiment, elevated CO2 does not seem to 

have a direct effect on photosynthetic assimilation, but seems to influence production 

by altering the water relations of the ecosystem (Ham et. al. 1995). During periods of 

either extended drought or extended rain, no differences in biomass production may 

occur under ambient or elevated C02 either because of equally limiting water stress or 

high photosynthetic rates (Ham et. al. 1995), hence a suggestion by the authors that if 

repeated wetting and drying cycles occur during the growing season, elevated CO2 

will induce more production because reduced evapotranspiration will delay the onset 

of water stress during each drying cycle. 

Differences in the growth strategies of C3 and C4 grasses may explain the differences 

in their responses to elevated CO2. Generally, rootshoot ratio determines the patterns 

of water supply and demand within the plant, and in some instances early rapid 

development of leaves and leaf area under elevated CO2 has been linked to enhanced 

rates of assimilation and a decrease in transpiration. The work of Morgan et al. (1998) 

shows that rootshoot ratio in the C3 grass Pascopyrum smithii increased in response 

to elevated CO2 while the rootshoot ratio of the C4 Bouteloua gracilis remained 

unaltered. Their explanation of the results is that the cool-season C3 grass sequestered 

total non-structural carbohydrate, storage carbohydrates and biomass below-ground in 

preparation for summer dormancy while resource allocation remained unaltered in the 

warm-season C4 grass. 

1.6. Stomatal responses to elevated CO2 and their implications for 

evapotranspiration and community water use 

The interactions of a plant with its environment under elevated CO2 can be described 

by several key processes relating to the role of stomata (Eamus, 1991; Jarvis et al. 

1999). Increased CO2 concentration around the leaf surface has a powerful effect on 

stomatal aperture and conductance (gs), which regulates the fluxes of CO2 and water 
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vapour into and out of the leaf and thus Ci (Mott, 1988). The extent of regulation of 

C02 and water vapour fluxes is dependent on the rate of diffusion, the demand for 

these fluxes, and the stomatal control of the fluxes (Jarvis et al. 1999). Mechanisms 

that control or regulate gs include among others (i) malate pools, (ii) ABA, (iii) pH, 

and (iv) ion channels, even though specific roles are not well understood (Jarvis et al. 

1999). The direct overall effect of reduced leaf level conductances is reduced leaf 

transpiration rates and a concomitant improvement in water use efficiency irrespective 

of whether or not assimilation (A) is increased by elevated C02 (Eamus, 1991). 

Therefore, elevated CO2 enhances the ratio of leaf net CO2 assimilation (Anet) to 

evapotranspiration (E), a relationship termed instantaneous water use efficiency. 

Oftentimes, reduced leaf level conductances are accompanied by increased rates of 

CO2 assimilation, although the extent of increase in rate of C02 assimilation differs 

somewhat for different species, photosynthetic pathways (C3 vs. C4), for crop and 

natural vegetation, and also whether that effect is sustained in the long-term. 

The potential for elevated C02 to reduce leaf transpiration is reported to be effective 

in the long-term (Morgan et al. 1994; Radoglou et al. 1992). Although an increase in 

leaf area tends to offset the effect of reduced transpiration, the benefit of enhanced 

water use efficiency often remains at the canopy level (Morrison and Gifford, 1994; 

Nijs et al. 1989); hence, elevated CO2 can ameliorate the negative effects of drought 

in many species (Morrison 1993). Moreover, reductions in water use as a result of 

partial stomatal closure could indirectly affect other important ecosystem processes 

and delay the onset of stress during drying cycles (Field et al. 1995; Hungate et al. 

1997). The stimulation of Anet/E by CO2 enrichment, along with responses such as 

changes in leaf area, root water access, and hydraulic conductivity will determine 

species performance with rising CO2, particularly in water limited situations. This 

suggests that enhancement of ecosystem production by elevated CO2 would be greater 

under drought than well-watered conditions. However, not all species and ecosystems 

would respond similarly. 

The production of many ecosystems together with seasonal dynamics of production, 

are coupled with the surface water balance; hence many ecological and biophysical 

processes could be altered by CO2-induced changes in plant-water relations (Bremer 

et al. 1996). For water-limited systems, elevated CO2 can result in greater water 
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availability for longer in the growing season, especially if there is not an increase in 

leaf transpiration surface per unit of ground area (Campbell et al. 1997; Field et al. 

1997, Owensby et al. 1997, and Yolk et al. 2000). By implication, the hydrological 

consequences of elevated CO2 in water-limited systems can be as significant as the 

direct C02 fertilisation effect on photosynthesis. Such speculation however, could 

become uncertain if current experimental designs fail to mimic the actual coupling 

between atmosphere and vegetation (McLeod and Long 1999). 

1.7. Long term implications of elevated C02 on South African grasslands 

The South African grassland biome is climatically hospitable and agriculturally the 

most productive ecosystem, contributing greatly to the country's gross annual 

production of maize, beef, and fresh milk and other dairy products. The economic 

potential is further enhanced by the discovery of large coal deposits and the world's 

richest gold mines. This coincidence of agricultural, fossil fuel and mineral wealth 

and the accompanying economic growth is not without serious environmental 

repercussions and potential for pressure on resources (Mentis and Huntley 1982), thus 

compromising food security, especially in the face of changing local land use 

practices and global climatic patterns. Water resource is another prominent area of 

concern because of the spatial and temporal scarcity of rainfall in the country. The 

area weighted annual average rainfall in South Africa is below the world average, 

although some parts of the country such as the eastern seaboard get rainfall higher 

than the world annual average. A reduction in rainfall reliability as predicted by Ellery 

and co-workers (1991) would make this situation much worse. 

Global change research aims to reduce levels of uncertainties among decision makers 

and policy makers seeking to develop an appropriate and evidence-based legislative 

and regulatory environment (Campbell and Smith 2000). Often some of the important 

decisions need to be made whether pertinent research results are available or not. On 

the other hand, researchers who focus on the detailed aspects of climate change 

caution against extrapolation before the understanding of the changes is robust 

(Huebert, 1999). It is hoped that the results of this study will contribute towards 

increased confidence in formulating policy on some aspects of South African 

grasslands. 
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South African grasslands are dominated by C4 grass species, for which some of the 

characteristic determinants of their distribution are high temperature during the 

growing season and a frequent occurrence of dry spells (Vogel et al. 1978). The C4 

photosynthetic pathway confers a competitive advantage on C4 grasses in water 

limited environments (Pearcy and Ehleringer 1984), and elevated C02 coincidentally 

brings about increased water use efficiency by vegetation. If the positive effect of 

elevated C02 on water use is maintained together with the advantages of the C4 

pathway, then there is a potential for a "water saving" effect on South African C4-

dominated grasslands. 

C4 grassland communities ill some parts of the world have undergone drastic 

encroachment by C3 shrubs in the last 125 years, possibly as a consequence of 

increased competitive abilities of C3 species as a consequence of rising atmospheric 

C02 concentrations (Polley et al. 1996, 2002). Bush encroachment is considered by 

some global change scientists (Pacala et al. 2001) to be a substantially stable carbon 

sink, estimated to have sequestered 18 to 34 percent of total North American carbon 

stocks over the 1980-1990 period. However, an important aspect of carbon 

sequestration is not only the potential of woody vegetation to bind more carbon, but 

how long it will be before the sequestered carbon is released back to the atmosphere 

through economic use or natural breakdown, a phenomenon that Komer (2001) terms 

"buying time with respect to atmospheric CO2 enrichment". As far as mitigation of 

C02 enrichment is concerned, the size of the carbon pools is more important than the 

rate at which carbon cycles through the pool (Steffen et al. 1998). Hence, preservation 

of old forests may represent a larger carbon pool than a rapidly expanding young 

forest. But for purposes of C02 mitigation, if old forests are not dynamic enough to 

fix more C02, perhaps rapidly expanding young forests remain an alternative 

mitigation tool. Other scientists (Gill et al. 2002; Jackson et al. 2002) suggest that the 

potential of woody vegetation to sequester carbon at the expense of natural grassland 

ecosystems is not as extensive as Pacala et al. (2001) suggest. Jackson et al. (2002) 

illustrate that encroachment can in fact reduce the carbon sequestration potential in 

high precipitation grassland ecosystems in the northern hemisphere. The work of Gill 

et al. (2002) further illustrate that the capacity of vegetation (grasslands in particular) 

to moderate impacts of elevated CO2 by storing additional carbon may be limited. 

Such confounding reports (Pacala et al. 2001; Gill et al. 2002; and Jackson et al. 
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2002) have major implications for policy formulation on Global Climatic Change, 

particularly ratification of the Kyoto Protocol and issues of trading in carbon stocks. 

Predictions for South Africa are that increasing levels of atmospheric C02 and global 

climate change will accelerate invasion of both C4 and C3 grasslands by perennial 

savannah and nama-karoo elements (grassy dwarf shrub land) at rates and magnitudes 

that exceed traditional explanations of bush encroachment (Ellery et al. 1991). If those 

predictions hold, long-term impacts will threaten the sustainability of major services 

yielded by the grassland biome, carbon sequestration notwithstanding. South African 

grasslands are unique in that they are dominated by C4 grass species (Vogel et al. 

1978), and serve as major water catchments for a large proportion of the country's 

population. Another major impact of global climate change driven changes on 

vegetation as a consequence of increasing atmospheric C02, would therefore be an 

alteration in the hydrology of C4-grassland ecosystems (Joffre and Rambal, 1993). 

However, predictions of vegetation changes on South African grasslands are based on 

a southern African climate change scenario of mean annual temperature increase of 

2°C and the mean annual precipitation decrease by 15% (Ellery et al. 1991). That 

study did not incorporate the positive effect of elevated CO2 on plant water use 

efficiency, which if included in climate change models (Hulme et al. 1996), could 

predict a different scenario for the grassland biome, but nonetheless, it represents 

earlier significant attempts to understand climate change impacts on southern African 

grasslands. 

The ability to predict the impact of elevated CO2 on grassland ecosystems is 

complicated by perceptions that C4 grasses will suffer a competitive disadvantage 

relative to C3 species. Mechanisms by which C4 grass species respond to elevated CO2 

may not be based as strongly on predictions based on differences in photosynthetic 

pathways as is the case for C3 species. Furthermore, it has been illustrated that C4 

species have the physiological flexibility necessary to realise the ecological advantage 

and growth potential of elevated CO2 (Henderson et. al. 1995). A recent review by 

Wand et al. (1999) on the responses of wild C4 and C3 grass species to elevated CO2 

concentrations also indicates that there is a significant positive response of C4 grasses 

at both leaf and whole plant levels. It is necessary to further investigate responses of 

South African C4 grasslands at levels of mixed community or even higher levels in 
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order to facilitate scaling-up. Reviews by Navas et al. (1999) and Poorter and Navas 

(2003) of past studies indicate that predictions of vegetation responses to elevated 

CO2 become more powerful when growth analyses are done at the mixed stand level 

than at the level of individual plants. This is because in mixed stands, responses to 

elevated C02 do not only depend on individual species physiological and 

morphological characteristics, but also on interactions that arise with other species 

competing for the same resources (Firbank and Watkinson, 1990). Furthermore, 

community level studies can be designed to allow for interaction of elevated C02 with 

other environmental parameters such as rainfall or nutrients. 

1.8. Objectives 

(i) To investigate interactive effects of elevated CO2 and different amounts of rainfall 

on ecosystem production and water use of a C4-dominated grassland. 

(ii) To determine treatment effects on component species representing key functional 

types. 

1.9. Experimental approach 

The study was undertaken in greenhouse based microcosms using are-constituted 

grassland community, sampled from Ngongoni field site in southern Kwazulu-Natal, 

South Africa (30022'S 30000'E, altitude 650 m). The Ngongoni grassland community 

is dominated by species that possess a C4 photosynthetic pathway, predominantly of 

the NADP-me. Dominant C4 grass species irrespective of photosynthetic pathway 

include Andropogon appendiculatus, Eragrostis racemosa, Sprobolus pyramidalis, 

and Themeda triandra. Only one C3 grass species, Alloteropsis semialata sub-species 

eckloniana, is common in this grassland community. There are also a few forbs. 

The following plant species were used: a C3 grass - Alloteropsis semialata (R. Br.) 

Hitchc. sub-species eckloniana, a C3 tuberous geophyte - Eriospermum mackenii 

(Hook. f.) Baker, subsp. mackenni; four C4 grasses representative of three C4 

photosynthetic pathways: Andropogon appendiculatus Nees and Themeda triandra 

Forssk. both NADP-me; Eragrostis racemosa (Thumb.) Stued., NAD-me; Sporobulus 

pyramidalis Beauv., PCK. The species composition and the soil of the established 

microcosm communities resembled those of the Ngongoni grassland community. An 

experimental approach of a greenhouse based microcosm enabled increased control 
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and precision on treatment inputs of C02 and water, and measurement of outputs such 

as community water loss (evapotranspiration) using weighing lysimetIy, while at the 

same time offering the benefit of working on a mixed community that is 

representative of the field site. Furthermore, data from the greenhouse microcosm 

experiment would augment fmdings from other investigations related to the field site 

that had either been conducted prior to the study described in this thesis (Wand 1999, 

Morrow 2002) or during the same period (Hattas 2002). 

1.10. Key questions 

Experiments in this study were designed to address the following key questions, in a 

manner that is not mutually exclusive. 

(i) What effects will elevated C02 have on canopy development and structure of 

microcosm communities, and will responses be dependent on water supply? 

(ii) Will elevated CO2 change above-ground biomass production at species and 

community levels? 

(iii) To what extent will above-ground biomass production be influenced by a 

combined effect of elevated CO2 and different watering treatments? 

(iv) Will community-level water use be changed by long-tern exposure to elevated 

CO2? 

(v) Will the responsiveness and proportional representation of C4 functional types 

be altered by a combined effect of elevated C02 and different watering 

treatments? 

(vi) What are the long-term implications of elevated CO2 on South African 

grasslands as water catchments? 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1. Microcosm design and set-up 

The Ngongoni field site has previously been used for in situ measurements of leaf 

level photosynthesis of C3 and C4 grass species in response to a natural source of 

elevated C02 coming out of a natural C02 spring (Wand, 1999; Wand et al. 2002). 

Stock et al. (2004) undertook community level measurements at the Ngongoni field 

site to characterise species composition, plant growth, leaf properties and soil nutrient, 

carbon and water dynamics in response to long-term exposure to a natural source of 

elevated CO2. Morrow (2002) studied aspects of below-ground responses at the field 

site. The study reported in this thesis aimed to achieve a high level of control on 

environmental parameters, and replication that was not feasible in the field. The 

advantage of using microcosms is that they enable thorough manipulation of specific 

environmental parameters and facilitate understanding of the role such parameters 

play in an ecological community (Fraser and Keddy, 1997). 

Mixed C4-grass mIcrocosm communities were constructed and installed in a 

greenhouse at the University of Natal in order to address the objectives and key 

questions of this study. Each microcosm contained a species assemblage sampled 

from a coastal Ngongoni C4-grassland community (30022'S 30000'E, altitude 650 m), 

about 30 km west of Paddock (30°49' S:30013'E: 514m) and 15 km south east of 

Harding (30034S:29°53'E: 820m) in southern Kwazulu-Natal, South Africa. 

The set up consisted of three rows of painted steel framework supporting 16 

microcosms, representing four randomly arranged treatment groups with four 

replicates per treatment. Two peripheral rows carried five microcosms each and a 

central row carried six microcosms (Figure 2.1.a and b). Beneath the microcosms on 

each row were two air supply pipes running horizontally along the length of the 

framework. One pipe was for elevated C02 and the other for ambient CO2. The supply 

of air was driven by a large fan which blew ambient outside air, through a pipe of 0.2 

m internal diameter, through the wall of the greenhouse. The air source pipe was 5 m 

tall to avoid extreme fluctuations in ambient CO2 that would otherwise occur if the 
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source was at ground level. The top end of the 5 m tall pipe was fitted with a filter and 

an elbow joint in order to exclude unwanted objects in the air stream. Downstream 

from the fan the air supply was split, to provide air streams of ambient or elevated 

C02. A bank of four cylinders of industrial grade C02 (Air Products, Pinetown, South 

Africa) connected to a manifold, served as a C02 source for the elevated C02 air 

stream. Pure CO2 was injected into the elevated CO2 supply pipe at a controlled 

pressure 2 m downstream from the fan. Injected CO2 mixed with ambient air along 

the length of the pipe-layout which subsequently delivered air and C02 mixture to the 

array of 16 microcosms. 

The rate of gas delivery in each microcosm was maintained at 0.38 m3min-1 to 

facilitate three volume changes of air per minute which was sufficient to reduce over­

heating to acceptable levels. The fan and all pipe-layout downstream from the fan 

were insulated with a white 10 mm thick "33 closed cell density" polyethylene foam 

(Sandor Industries, Pinetown, South Africa) to minimise heating problems in the air 

stream, and plant pots were painted white to minimise a temperature build-up in the 

soil (Figure 2.1.b). 

A diagram of a single microcosm is illustrated in Figure 2.1.c depicting a 37 litres 

PVC plant pot of top radius 0.225 m and 0.165 m bottom radius, by 0.3 m deep, fitted 

with a polycarbonate open-top chamber of 0.8 m height and radius 0.225 m. Also 

shown in the diagram is a movable supporting metal frame of 0.4 m x 0.4 m that was 

laid over the main framework at a height of 0.7 m from the floor of the greenhouse. 

The movable supporting frame enabled microcosms to be lifted independently for 

weighing without interfering with the rest of the set-up using a cantilevered balance. 

A sleeve was attached to the centre of each microcosm in order to accommodate a 

CO2 delivery pipe rising from the main supply pipe. Risers were fitted with adjustable 

butterfly valves in order to maintain air velocity close to 2.1 ms-1
, which was adequate 

to supply 0.38 m3min-1 (to permit three changes of air per minute in the open top 

chambers). The risers were designed to be detachable from the main supply pipes to 

prevent contact between the riser and the central sleeve when plant pots were lifted 

during weighing. 
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Figure 2.1.a: General view of the experimental set-up during construction, showing 
three rows of painted steel framework supporting 16 microcosms. Air and CO2 

delivery pipes rising from the two supply pipes (one for ambient air and the other for 
elevated CO2) can be seen beneath each row of microcosms. The cantilevered balance 
can be seen in the middle row. 
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Figure 2.1.h: General view of the experiment during a growing season, showing 
microcosms fitted with open-top chambers. Operation of the cantilevered balance is 
illustrated on the right hand row. The microcosms have been painted white to 
minimise temperature build up in the soil. The fan and all pipe-layout downstream 
from the fan were insulated with white polythene foam to minimise heating problems 
in the air stream. 
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The soil placed in the microcosms attempted to reproduce field conditions as closely 

as possible. All soil was sourced from the field site. A 5 cm layer of clay was placed 

into the bottom of the pots followed by a 20 cm deep silty loam characterised by a 

fine texture and low gravel content. The bottom of plant pots was fitted with two 1cm 

wide by 0.5 m long drainage tubes, sealed at one end with detachable plugs for 

quantifying drainage output. Drainage tubes were equidistant from the central sleeve 

attached to the C02 supply pipe. The design allowed for measuring ecosystem water 

output in addition to evapotranspiration. An additional opening was made on the side 

of each pot at 10 cm depth from the soil surface, and was fitted with a perforated PVC 

tube that extended 1 cm outside the pot. The perforated tube was used as a portal for 

measurement of soil temperature. Two sets of small openings that could fit the probes 

of a Delta-T ThetaProbe (Delta-T Devices Ltd., Cambridge, UK) soil moisture sensor 

were made at 12 cm and 22 cm depths on each side of a plant pot. The soil moisture 

sensor was used to monitor changes in soil water at 6 cm below the soil surface, at a 

12 cm depth in the rooting layer, and at 22 cm depth in the clay layer. The average 

mass of a microcosm including soil, plants, and associated accessories excluding the 

chamber was 31.6 kg before watering, and about 41.3 kg after watering to field 

capacity. 

2.2. Plant collection and establishment in the greenhouse 

Experimental plants and soil were collected from the field site on 16th April 1998, and 

the C4 grass communities were established in microcosms within 72 hours of 

collection. Heavy rain had fallen on the field site a few days prior to collection of 

plants and soil, and water content of the soil and underlying clay was 19 ± 1 % and 20 

± 1 % respectively, hence plants were not subjected to any sort of water stress during 

transplanting. It was ensured that the species composition and the soil of the 

established communities resembled those of the Ngongoni grassland community. 

Resemblance of the microcosms to the field site was critical because factors such as 

species density (Wayne and Bazzaz 1995, 1997; Wayne et al. 1999) and composition 

(Chiariello and Field, 1996) have an influence on responsiveness of mixed 

communities to elevated C02. Plant communities were allowed four months to re­

establish in the greenhouse. No plant mortality was observed after planting, and there 

were no major differences in the basal cover and height of plant communities in all 16 

microcosm after four months of establishment, and this was a satisfactory state of 
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affairs prior to application of treatments. At the end of the establishment phase, and 

before the treatments were applied, the above-ground biomass of established plants 

was harvested and quantified by species, and then burned in a muffle furnace at 500 

°c. The plant ash was sprinkled on to the soil surface to simulate effects of burning on 

nutrient turnover. 

Composition of the established communities included a C3 grass - Alloteropsis 

semialata (R. Br.) Hitchc. sub-species eckloniana, a C3 tuberous geophyte -

Eriospermum mackenii (Hook. f.) Baker, subsp. mackenni; four C4 grasses 

representative of three C4 photosynthetic pathways: Andropogon appendiculatus Nees 

and Themeda triandra Forssk. , both NADP-me; Eragrostis racemosa (Thumb.) 

Stued., NAD-me; Sporobulus pyramidalis Beauv. , PCK. Each plant was replicated 

twice per pot to make a total of 12 plants equally distributed on a total surface area of 

0.125 m2 per pot. Earthworms collected from the same site as the plants were included 

in the microcosm to facilitate nutrient turn-over. In most grasslands, earthworms 

make up a dominant fraction of the biomass of soil animals and have important effects 

on the structure and function of the ecosystems (Zallar and Arnone III, 1997). 

Principal activities of earthworms include soil turnover, incorporation of organic 

matter, improvement of soil aeration, and preservation of soil structure through 

humification. 

2.3. Weed and pest control 

Microcosms were hand weeded when weeds appeared. On two occasions in October 

1999 at the beginning of the second year, the microcosms were sprayed for mites 

when required, using a domestic insecticide; Baysol contact spray manufactured by 

Bayer Chemicals (South Africa) active ingredient Cyfluthrin (Pyethroid), was used. 

2.4. The simplified weighing lysimeter 

Weighing lysimetres are well recognised as the best technique available for measuring 

evapotranspiration of grasses (Howell et a. , 1991). The technique is convenient for 

confmed soil systems without the spatial and temporal variations characteristic of 

field measurements. The cost involved in construction of the lysimeter was minimised 

by use of locally available materials and labour. Control of water inputs is easy and 

outputs can be measured by incorporating evapotranspiration, drainage loss and a 
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change in the amount of soil water in the lysimeter over a known period of time, 

provided surface run-off is prevented, otherwise the volume of net surface run-off 

should be included in the [mal equation. The lysimeter used in this study was 

designed and constructed in the workshop of the School of Life and Environmental 

Sciences at Natal University. Each plant pot and associated drainage accessories 

formed a confined soil column of known surface area and soil volume as described in 

section 2.1 above. 

The weighing apparatus consisted of a rail-guided and hand-operated mobile crane to 

which a load cell with a millivolt meter was attached (Figure 2.1.b). The load cell and 

reading meter were supplied and calibrated by Scales for Africa (Johannesburg, South 

Africa). The balance was placed on top of the crane, and the read-out LCD screen was 

attached at breast height on the side of the crane facing the operator. The weighing 

capacity of the load cell was 60 kg, which was sufficient for the average pot mass of 

37-39 kg in the low water treatments and 41-43 kg in the high water treatments. 

Weighing was done by lifting the pots with the hand-operated crane such that they 

were suspended from the load cell. The crane was fitted with castors that enable it to 

move along the rails in either direction. Metal rails were fitted on the floor of the 

greenhouse along rows of the main framework to ensure that the lysimeter remained 

stable and sturdy during measurements. 

2.5. Treatments 

The treatments consisted of two by two factorial combinations of CO2 and watering, 

each replicated four times. A considerable degree of control over CO2 concentrations 

and watering within set ranges was achieved. As a result, some of the inherent 

complexities of doing this kind of work in the field were eliminated, although the 

limitations were restricted space and over-simplified ecosystem interactions. 

2.5.1. C02 treatments 

Ambient CO2 treatment fluctuated around 380 /lmol mor', while the elevated CO2 

treatment was ambient plus 370 /lmol mOrl. Temporal fluctuations in CO2 

concentration around 10 /lmol mor' in all chambers were associated with fluctuations 

in CO2 concentrations of ambient air. Calibration of C02 treatments was checked 

weekly using a portable infrared gas analyser (IRGA). An Analytical Development 
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Company LCA-2 was used in the ftrst year of the experiment and aLi-Cor 6262 was 

used in the subsequent two years. ALi-Cor 6400 was also used to check C02 

concentrations in the third year. For some reason the C02 concentration in the 

elevated C02 treatment in the third row of microcosms was about 50 /-lmol mor
l 

lower than the set point. Despite several attempts this problem could not be solved 

and the two elevated C02 microcosm in this row remained at CO2 concentrations 

slightly lower than the other six microcosms throughout the duration of the study. 

2.4.2. Watering treatments 

Watering treatments were based on monthly average rainfall of a 50-year data set 

falling in the period 1936 to 1990 measured at Eureka weather station (30043'S 

30°01 'E), 5 km from Ngongoni field site (Figure 2.2). In the first year a high watering 

treatment was equivalent to a mean annual rainfall (MAR) of 736 mm, and the low 

watering treatment was set at 80% of MAR, a ftgure close to the average rainfall of 

dry years. The volume of water required for watering events was determined from 

rainfall in mm, and the soil surface area of plant pots (an average of the top and 

bottom radius of the plant pot, 0.225 m and 0.165 m respectively, was used to 

calculate the soil surface area). It was also taken into consideration that the central 

part of plant pots was fttted with a riser for air delivery (ambient and C02-enriched), 

and that the riser was surrounded by a sleeve of 0.045 m radius (Figure 2.1 c). 

In the ftrst year, water volumes per month were according to annual rainfall patterns 

(Table 2.1), but within each month water was supplied in a stochastic manner, to 

simulate natural rainfall. During the course of the ftrst year, it became apparent that 

the stochastic pattern at 80%MAR watering treatment was sometimes stressful for the 

plants during prolonged periods of no watering. Hence, water treatments were 

changed to MAR and 120%MAR in the second year starting August 1999, and 

application was changed from stochastic to regular (Table 2.2) at intervals of every 

three and four days to avoid prolonged dry periods. In the third year, water treatments 

were swapped as shown by the change in the direction of arrows from second to third 

season in Table 2.2, to assess the effects of changes in rainfall pattern. 
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Table 2.1: Monthly watering amounts in mm per treatment. 

Month Monthly watering Monthly watering at Monthly watering at 
at MAR (mm) 80%MAR(mm) 120%MAR (mm) 

July 18 14 22 

August 30 24 37 

September 44 35 52 

October 74 59 89 

November 86 69 103 

December 99 79 118 

January 93 75 112 

February 91 72 109 

March 79 63 95 

April 67 54 80 

May 39 31 47 

June 16 13 19 

Total 736 588 883 

Table 2.2: Changes in annual rainfall treatment and manner of application. 

Year Rainfall amount (mm) 
CO2 and water Stochastic Stochastic 

treatments 80%MAR MAR 
1998/1999 (low water) -". (high water) 

" 
~ Regular ~ Regular 

1999/2000 MAR 120%MAR 
(low water) ~ V (high water) 

Regular / ~ Regular 
2000/2001 MAR 120%MAR 

(low water) (high water) 
Effective water 110%MAR 90%MAR 

treatment at end (high water) (low water) 
of year 2 

Effective water 107%MAR MAR 
treatment at end (high water) 

of year 3 



Chapter 2 Materials and Methods 29 

2.6. Monitoring of experimental micro-climatic conditions 

A major advantage of using experimental microcosms is the potential for good control 

of environmental variables. Attempts to attain such control on the microcosm set-up 

used in this study include reduction of direct radiation on plant pots by painting all 

pots with white paint, and use of 40% density shade cloth skirts hung to mid-canopy 

height. Air flow through the open-top chambers was controlled with butterfly valves 

at the bottom of the risers, and flow rate out of the risers was monitored at the top of 

the riser to ensure that it was maintained at 2.1 ms· l
. Monitoring of C02 

concentrations was manual, using an LCA2 in the first year of the experiment, and a 

Li-Cor 6262 in the second and third years of the experiment. Control of C02 

treatments (ambient and elevated) was satisfactory, and periodically fluctuated around 

10 /-lmol mor l of set point due to fluctuations in ambient air. A minor concern as 

mentioned in section 2.4.1 , was that two elevated C02 microcosms in the third row of 

microcosms measured about 50 /-lmol mor l lower than set point, despite numerous 

attempts to solve the problem. As a result the two elevated CO2 microcosms remained 

at C02 concentrations slightly lower than the other six microcosms. However, several 

studies have used elevated CO2 concentrations of 680 /-lmol mor l with satisfactory 

results. 

Air temperature inside and outside the chambers as well as soil temperature were 

monitored in a subset of microcosms at hourly intervals from September to May each 

year, using thermistors attached to a data logger (MCS 120-EX, MC Systems, Cape 

Town). Thermistors were calibrated at the start of the experiment so that their 

readings did not deviate by 0.6°C from each other. Air temperature inside the 

chambers was monitored at the top of the canopy (80 cm) and at mid-canopy height 

(40 cm). Thermistors measuring air temperature were covered with shields made of 

white polystyrene to avoid effects of direct radiation. Generally, there was no 

difference in air temperature at the top of the canopy (80 cm) and at mid-canopy 

height (40 cm). During the cooler months of the year, mid-day air temperature inside 

the chambers ranged between 25 °C - 32 °C. Air temperature inside the chambers was 

3 °c warmer than outside the chambers during the cooler months of the year, and 

during the warmer months mid-day temperatures inside the chambers ranged between 

30 °C - 41 °C. Air inside the chambers at mid-day was 6 °c warmer than air outside 

the chambers during the hottest months of the year. Soil temperature was monitored at 
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a depth of 10 cm with a thermistor inserted in the soil through a horizontal perforated 

PVC sleeve. Mean, minimum and maximum readings were recorded hourly. Day time 

soil temperature at the 10 cm depth was usually 4 °c lower than air temperature, with 

a characteristic time lag as air cooled down and warmed up before the soil. 

Net incoming radiation was monitored at the top of the open top-chamber using an 

MCS 155-1 radiation sensor attached to the same data logger as the thermistors. 

Calibration of the radiation sensor was done at MC Systems in Cape Town. Recorded 

values of net radiation at mid-day during clear and cloudless summer days of the year 

measured 670 Wm-2
, and mid-day values recorded during clear, cloudless winter days 

of the year were around 450 Wm-2
• The distribution of photosynthetically active 

radiation within plant canopies was also measured at full canopy once each year. 

2.7. Experimental design and statistical analysis 

The set-up consisted of four open-top chambers per treatment by four treatments. 

There were five grass species and one geophyte per treatment, and the plants were 

replicated twice in each chamber. A classical two-way analysis of variance was 

performed on most of the results, giving fifteen degrees of freedom per species and 

thirty-one degrees of freedom in total. Analyses were performed using Unistat for 

Windows version 4.53. 
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2.8. Work plan 

Experiments were planned to generate data that would be consolidated into major 

themes as illustrated in the concept map below. 
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seasonal effects 

Year 1: (September 1998 -May 1999) 

Resprouting plants were exposed to ambient and elevated C02 and watering 

treatments (Tables 2.1 and 2.2) for an entire growing season. Measurements of 

community water use were taken with the weighing lysimeter, from which annual rate 

of evapotranspiration could be calculated. Phenological observations were made, and 

canopy development assessed by measurements of leaf growth rate on two leaves per 

plant per pot in October, December, February and April. The set-up was assessed for 

performance of CO2 delivery, spatial and temporal distribution of CO2 within the 

open top chambers, and temperature fluctuations. End of year above-ground biomass 

was harvested, and quantified by species into two components viz. leaf and stem-plus­

floral parts. 

Year 2: (September 1999 - May 2000) 

A revised watering schedule as shown in Table 2.2 was applied, and the following 

measurements commenced once plants had re-sprouted. 
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1. Weeldy measurements of water use with the weighing lysimeter, which were 

indicators of annual rates of evapotranspiration. 

3. Canopy level gas exchange using the Li-6262 IRGA once a month for all 

pots/treatments. 

4. A data logger was used to collect concurrent measurements of total incoming 

radiation at the top of selected and representative open-top chambers, and canopy and 

soil temperatures. 

5. Visual phenological observations at three monthly intervals to estimate the 

proportion standing dead. This permits assessment of species composition in terms of 

live biomass. 

6. Harvesting at the end of the year to quantify total above ground biomass. 

Year 3: (August 2000 - May 2001) 

Watering treatments were changed again as shown in Table 2.2 such that pots that 

were subjected to MAR in the previous year received a watering treatment that was 

increased to 120%MAR and vice versa, while the frequency of application remained 

unchanged (twice weekly application). The reason for swapping water treatments was 

to investigate whether there was a carry over-effect of previous water treatments on 

responses to elevated CO2 after two years of exposure. Measurements of leaf level gas 

exchange were done using the Li-Cor 6400, in order to evaluate individual species 

contribution to above-ground productivity, evapotranspiration, and total community 

water use. Other physiological measurements were similar to those taken in the 

preVIOUS year. 

In order for community and ecosystem level studies to make a meaningful 

contribution towards understanding potential impacts of climate change on present 

and future vegetation distribution pattern, and to have a predictive capacity, they have 

to continue for a number of years. Mooney et a1. (1991) suggest that at least a decade 

is required to allow a response trajectory to be established. 



Chapter 3 Canopy structure and phenology 33 

CHAPTER 3 

CANOPY STRUCTURE AND PHENOLOGY 

3.1. Introduction 

Canopy structure describes the spatial and temporal organisation of leaf area with 

respect to the positional distributions of stems and branches in a stand of vegetation 

(Norman and Campbell, 1989). Phenology, on the other hand, describes the timing 

and progress of plants through identifiable stages of development in response to 

changes in climate or photoperiod. Effects of elevated C02 on plant development 

(Bazzaz 1990), including seedling establishment, growth, biomass allocation, time of 

flowering and senescence, have a remarkable influence on plant competitive 

outcomes, because even small differences in time of emergence among seedlings have 

significant consequences for the ability of plants to compete with their neighbours 

(Ross and Harper 1972). C02-induced changes in the rate of plant development are 

usually borne through leaf and stem morphology (Reekie 1996), and consequently 

modification of canopy structure, which in turn has an effect on species' competitive 

interactions (Gaudet and Keddy 1988; Beyschlag et al. 1990; Anten and Hirose, 

2001), particularly with regards to above-ground production. 

There is a very good correlation between parameters of plant form (canopy structure) 

and functional processes of net primary production (Lambers and Poorter 1992) 

nutrient cycling (Eviner and Chapin 2003), hydrology (LeMaitre et al.1999), and 

plant water use (Passioura 1984). Thus, it is suggested that the influence of canopy 

structure on net primary production is sometimes greater than that of photosynthetic 

C02 uptake. This is a contention that is supported by the experimental work of 

Beyschlag and co-workers (1990), which illustrates the significance of plant structural 

features beyond photosynthetic characteristics (carboxylation efficiency, maximum 

photosynthetic capacity, and quantum efficiency). Lambers and Poorter (1992) 

estimate that in herbaceous C3 species, an average of 10% increase in relative growth 

rate is associated with a 7.5% increase in leaf area ratio and a 2.4% increase in net 

assimilation rate. CO2-induced changes in structural parameters such as canopy height 

(Hartz-Rubin and DeLucia, 2001) and leaf area distribution (Ellsworth and Reich, 

1992, Hirose and Werger 1995) influence primary production in a manner 
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proportional to the vertical gradients of the light regime. In this regard, Barnes et al. 

(1990) demonstrated that modifications of canopy structural parameters in the upper 

canopy layers have more profound consequences for net photosynthesis, relative to 

structural modifications in the lower layers of the canopy. 

The importance of phenology in plant functional processes is especially highlighted in 

models of primary production that predict potential consequences of global climate 

change on the terrestrial carbon cycle (Jackson et al. 2001; Kramer et al. 1996). As far 

as nutrient cycling is concerned, senescence constitutes a major trigger for 

translocation (Son and Gower, 1991; Jach and Ceulemans 1999), with important 

implications for timing of senescence under elevated C02. Phenological changes of 

leaf production and loss of green leaf area due to senescence are long-term 

mechanisms that affect plant water use (Passioura, 1984). Effects of elevated CO2 on 

phenology can influence mechanisms by which phenology itself affects plant water 

use. Importantly, elevated C02 affects plant water use in the short-term via reduction 

in stomatal conductance (Knapp et al. 1993a; Wand et al. 1999), which in the long­

term results in significant reductions in canopy transpiration (Knapp et al. 1993a, 

Harmelynck et al. 1997) and in some instances significant increases in soil water 

(Owensby et al. 1999; Griinzweig and Komer, 2001; Morgan et al. 2001). On the 

other hand, stimulation of leaf growth under elevated CO2 (Taylor et al. 1994) is a 

developmental response that can result in larger plants and earlier canopy closure, 

whose consequence on plant water use is to negate the water saving effect due to 

reduced stomatal conductance (Field et al. 1995). However, in ecosystems with low 

leaf areas such as grasslands, a stimulation of leaf growth that is accompanied by an 

increase in leaf area index can lead to a reduction in evaporation from the soil surface 

(Field et al. 1995), and consequently an improvement in ecosystem water use 

efficiency. 

The current chapter will characterise treatment effects on phenology and canopy 

structure of the model C4-dominated grassland community by assessing phenology of 

sprouting, flowering and senescence; and how responses of leaf area distribution 

influence canopy structure. Results obtained will be used to answer the first key 

question of the study which states: (i) what effects will elevated CO2 have on canopy 

development and structure of microcosm communities, and will responses be 
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dependent on water supply? The data will also contribute to the broader objective of 

the study by enabling an assessment of whether treatment effects on community 

structure and phenology have a bearing on community production and water use 

(Chapter 8 - General Discussion). 

In this introductory section of the chapter, reference is made to other studies on C4-

dominated grasslands and to communities and grasslands with C3 grasses for 

comparison. Previous studies generally indicate that elevated CO2 influences plant 

phenology through changes in timing of leaf emergence, the time it takes for 

developing leaves to reach maximum leaf area, longevity of leaf area, senescence, and 

the rate of leaf turnover (Reekie and Bazzaz, 1991; Knapp et al. 1999; and Reich et al. 

2001). 

In C4-dominated tallgrass prairie elevated C02 was reported to enhance the rate of 

leaf expansion, and to reduce the time required for leaves to reach maximum leaf area, 

by 29% (Knapp et al. 1999), while leaf senescence was delayed at the end of the 

growing season (Ham et al. 1995, Knapp et al. 1999). Positive effects of elevated CO2 

on growth in tallgrass prairie were particularly enhanced under low precipitation 

(Owensby et al. 1993; Knapp et al. 1999), and the mechanism was through enhanced 

soil water at the end of the growing season. In an estuarine marsh ecosystem on the 

other hand (Curtis et al. 1989a), elevated C02 delayed senescence only in C3 species 

with no effect on growth in C4 species. In a study that measured leaf area longevity 

under elevated CO2 with no restriction on water supply (Craine and Reich 2001), 

increased longevity was measured in C3 species only, with no effect on C4 species. 

From the above studies, it seems that effect of elevated CO2 on vegetative phenology 

of grasslands is strongly mediated by water availability, which differentiates between 

C3 and C4 responsiveness. It is also clear that the appropriate level at which to study 

this phenomenon is the community level, and not at individual species level. 

A recent meta-analysis of responses of plant reproduction to elevated CO2 (Jablonski 

et al. 2002) suggests that wild species are less responsive compared to crop species. 

Furthermore, studies on wild perennial grasses are scarce. The few studies that have 

investigated responses of plant reproduction to elevated CO2 in wild annual grasses 

show highly variable results. For instance, Griinzweig and Komer (2000) reported no 
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change in reproductive output of two C3 grass species (Aegilops kitschyi and Hordeum 

spontaneum), and a decline in reproductive output of a third C3 grass species 

(Aegilops peregrina). On the contrary, Jackson and co-workers (1994) observed a 

30% increase in seed production of a C3 annual grass Avena barbata Brot. under 

elevated C02. With regards to C4 annual grasses, Alberto et al. (1996) reported no 

consistent effect of elevated CO2 on grain yield in Echinochloa glabrescens, 

suggesting a non-consistent effect of elevated C02 on reproduction responses. A study 

by Potvin and Strain (1985) showed that flowering timing of a C4 annual grass 

(Echinochloa crus-galli) was advanced by elevated CO2 only in populations derived 

from localities with shorter growing seasons, suggesting that positive effect of 

elevated C02 on floral initiation may be dependent on temperature. 

Responses of plant reproduction to elevated C02 appear to be influenced by abiotic 

environmental parameters such as water availability. For instance in a study on pepper 

plants - Caspium annum (Penuelas et al. 1995), flower and fruit production increased 

when there was sufficient water. Several studies in the USA have shown that elevated 

CO2 has the potential to increase soil water availability in grasslands (Ham et al. 

1995; Owensby et al. 1997; Morgan et al. 2001). However, it is not clear how 

reproduction responses will benefit from increased soil water availability. Perhaps the 

benefit of reproduction response to elevated CO2 and enhanced soil water availability 

will be realised mostly in plant species that are not dependent on specific pollinator 

association and/or species whose flowering is not dependent on photoperiod or degree 

days. 

Effects of elevated CO2 on canopy structure are manifested through increases in leaf 

area and canopy height (Taylor et al. 1994, Hartz-Rubin and DeLucia, 2001), even 

though responses are species specific and/or dependent on other environmental factors 

such as variation in amount and timing of rainfall (Jackson et al. 1998, Knapp et al. 

1993a, Owensby et al. 1996, 1999). Precipitation indirectly influences canopy 

structure of sub humid grasslands (Knapp 1984) through competition for light (Lane et 

al. 2000), by either increasing canopy height without any effects on basal cover or by 

increasing basal cover without an effect on canopy height (Lane et al. 2000). As 

above-ground biomass and leaf area increase with increasing precipitation, new 

individuals become established only when above-ground gaps make light available 
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(Lauenroth and Coffm, 1992; Jurik and Pleasants, 1990). In the absence of elevated 

CO2, there is a positive correlation between precipitation and above-ground net 

primary production of grasslands (Sala et al. 1988; Lane et al. 1998; Titlyanova et al. 

1999). However, this positive effect is reported to diminish under elevated C02 

(Owensby et al. 1993), and production is enhanced under elevated C02 preferentially 

when precipitation is low or variable. 

3.2. Materials and Methods and statistical analysis 

3.2.1. Materials and Methods 

Experimental plants were allowed to establish for four months in a greenhouse (from 

April to July 1998), after which they were clipped to a 5 cm stubble. Application of 

C02 and water treatments commenced on the 1 st August of each year of study, 

continuasly for a complete growing season, until time of biomass harvest (June/July). 

Canopy development and seasonal phenology were monitored as outlined below, at 

specific times from beginning of the year until the end, when above-ground foliage 

was harvested. 

Time of sprouting was recorded bi-weekly at intervals of three and four days. Plants 

were considered to have sprouted on observation of three or more leaves emerging 

from the first tiller, when the height of emerging leaves measured 5 cm or more. Time 

was recorded as days elapsed since the application of treatments, so generating a 

continuous variable. Day of year (DOY) was not used because the growing season 

incorporates the end and beginning of two consecutive calendar years (August to 

May), and so would generate a discontinuous variable. 

Time of appearance of first floral parts was assessed by external evidence of rapid 

elongation of the upper internodes of the flower stalk plus attached leaf sheaths, 

which was shortly followed by emergence of the inflorescence; and quantified in days 

elapsed since application of treatment. 

Time of loss of greenness (beginning of senescence) was assessed qualitatively by 

visual observation of 50% senesced above-ground plant tissue for each species in 

different treatments, and quantified in number of days elapsed since application of 
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treatments. The extent of senescence at harvest was estimated qualitatively as 

proportion of dead (brown leaves) to live (green leaves) plant tissue. 

Estimation of leaf distribution within a canopy was done by a stratified harvesting 

procedure at the end of each year. Plants were clipped at intervals of 20 cm from top 

to bottom of the canopy, leaving a 5 cm stubble to ensure that meristematic tissues 

were not destroyed during clipping. Plant biomass from each layer was sorted into 

leaves, stems and flowers where present, and placed in labelled brown paper bags and 

oven-dried at 60°C for 5 days. Dry leaves were weighed separately from dry stems 

and flowers. Only leaf biomass data by layer was used to estimate leaf distribution 

within the canopy. 

3.2.2. Statistical analysis 

Statistical analysis was performed on quantitative data only, and qualitative data such 

as loss of greenness (senescence) and its extent are referred to as personal 

observations. Data analysis was aimed at elucidating main and interactive effects of 

CO2 and water treatments on time to sprouting, leaf growth, time to first appearance 

of floral parts, and canopy structure, by performing a two-way ANOV A (Unistat 

version 4.53) at the a = 0.05 level of significance, using the Classical Experimental 

Approach. Where possible, data were analysed separately for species level and 

community level treatment effects. Assessment of treatment effects on species 

responses to time to sprouting and time to of flowering, as well as speCIes 

contributions to community structure were done by use of "species" as a third factor 

in addition to CO2 and water in a three-way ANOV A. If the ANOV A indicated 

significant treatment effects on a factor with more than two levels, Tukey-HSD 

(Highly Significant Differences) Multiple Comparison test was performed to fmd out 

which of the levels were significantly different. Missing values due to lack of 

sprouting for instance, created a situation of an unbalanced design in the data set. 

Nonetheless, the Unistat's ANOVA procedure of Classical Experimental Approach 

takes unbalanced designs into consideration so that the sum of squares computed for 

two or three factors and their interaction, are calculated after making adjustments for 

main effects. 



Chapter 3 Canopy structure and phenology 39 

3.3. Results 

3.3.1. Time to sprouting 

3.3.1.1. First year (C02 350,700 ppm and water MAR, 80%MAR) 

Sprouting took place 17 days after application of treatments. Themeda was the first 

species to sprout, followed by Eragrostis, then Sporobolus, Alloteropsis and 

Andropogon. Trends in the response are illustrated in Figure 3.1.a., and statistical 

significance of treatments is presented in Table 3.1. Early sprouting in Themeda and 

Eragrostis occurred under elevated C02 + MAR treatment, and the effect of C02 on 

the response was statistically significant for both species, but effect of water 

treatments was not statistically significant on those species as shown in Table 3.l. 

C02 treatments did not have a significant effect on sprouting in Alloteropsis and 

Sporobolus, but effect of water treatments was significant. In Andropogon which 

sprouted last, both CO2 and water treatments (without interaction) influenced time to 

sprouting. 

To present the results in a community context, data were pooled to generate three 

factors, namely; CO2 treatment, water treatment, and species. A three-way ANOV A 

was performed to test if differences in the mean values of time of sprouting among 

CO2 treatments, water treatments, and species are greater than would be expected by 

chance after allowing for the effects of differences in other factors. Results of the 

three-way ANOVA (Table 3.2) showed a statistically significant effect (P <0.001) of 

C02, water and presence of different species, and there was also a significant 

interaction between CO2 and water treatments (P = 0.0370). There was no apparent 

interaction of CO2 and water treatments when a two-way ANOVA (Table 3.1) was 

performed on results of individual species. The significant main effect of species, and 

an interaction of CO2 and water treatments in a three way ANOV A highlight 

treatment effects on competitive outcome of different sprouting capacities at a 

community level. To isolate which species differ from the others in their sprouting 

capacity, Tukey-HSD mUltiple comparison procedure was performed (Table 3.3), and 

results suggest that the sprouting response of the grasses can be grouped in to three, 

with Themeda as an early sprouter, then Eragrostis and Sporobolus as intermediate, 

and lastly Sporobolus, Andropogon, Alloteropsis as late sprouters. 
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Table 3.1: Statistical significance of treatment effects on time to sprouting in the first 
year. 

Species CO2 Water Interaction 

Themeda P = 0.0294 NS NS 

Eragrostis P = 0.0263 NS NS 

Sporobolus NS P = 0.0290 NS 

Alloteropsis NS P = 0.0256 NS 

Andropo~on P = 0.0321 P = 0.0417 NS 

Table 3.2: Results of a three-way ANOV A for CO2 x water x species at the a = 0.05 
level on time to sprouting. 

Due To 

Main Effects 

CO2 

Water 

Species 

2Wa Y Interactions 

C02 x Water 

02 x Species C 
Wa 

3Wa 

C02 xWa 

ter x Species 

Y Interactions 

ter x Species 

Explained 

Error 

Total 

Sum of 
Squares 

1056.475 

166.056 

162.006 

728.413 

82.431 

43.056 

24.537 

14.838 

1.662 

1.662 

1140.569 

1359.375 

2499.944 

Mean 
DoF Square F-Stat Signif 

6 176.079 18.134 0.0000 

1 166.056 17.102 0.0001 

1 162.006 16.685 0.0001 

4 182.103 18.755 0.0000 

9 9.159 0.943 0.4899 

1 43.056 4.434 0.0370 

4 6.134 0.632 0.6406 

4 3.709 0.382 0.8212 

4 0.416 0.043 0.9965 

4 0.416 0.043 0.9965 

19 60.030 6.182 0.0000 
140 9.710 

159 15.723 
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Table 3.3: Tukey-HSD multiple comparisons test for time to sprouting (days) in the 
fIrst year for all treatments combined, and data classifIed by species at the a = 
0.05 level. 

* denotes signifIcantly different pairs and vertical bars show homogeneous subsets. 

Homogenous 
Group Mean Themeda Eragrostis Sporobolus Alloteropsis Andropogon subsets 

Themeda 17.7188 * * * * I 

Eragrostis 20.6250 * * * I 

Sporobolus 22.8125 * I I 

Alloteropsis 23.0313 * * I 

Andropogon 23.4063 * * I 

3.3.1.2. Second year (C02 350, 700 ppm and water MAR, 120%MAR) 

Sprouting was delayed by a few days in the second year compared to the fIrst year, 

probably due to a mild drought brought about by long periods of no watering during a 

stochastic application of watering treatment in the fIrst year. Themeda was once again 

the fIrst species to sprout after 18 and 20 days in elevated CO2 + 120%MAR and 

elevated CO2 + MAR treatments respectively. The pattern of sprouting is represented 

graphically in Figure 3.1.b., and the statistical signifIcance of the response IS 

presented in Table 3.4. CO2 treatments had a signifIcant effect on sprouting III 

Themeda and Andropogon, such that plants growing under elevated CO2 flowered 

earlier than plants growing under ambient CO2 in these two species, even though 

sprouting in Andropogon occurred much later than in Themeda. Water treatments had 

a signifIcant effect on sprouting in Sporobolus, and plants growing under the 

120%MAR treatments sprouted earlier than their counterparts in the MAR treatments 

irrespective of CO2. In Eragrostis, the earliest date of sprouting was recorded under 

elevated C02 + 120%MAR, and the ANOV A result was signifIcant for both CO2 and 

water without interaction. There were no treatment effects on the sprouting pattern of 

Alloteropsis in the second year. 
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Incidents of lack of sprouting were recorded in Alloteropsis under ambient CO2 + 

MAR and in Eragrostis under elevated CO2 + MAR. The frequency of lack of 

sprouting was one plant in each of the two species. 

Table 3.4: Statistical significance of treatment effects on time to sprouting in the 
second year. 

Species CO2 Water Interaction 

Themeda P = 0.0213 NS NS 

Eragrostis P = 0.0211 P = 0.0354 NS 

Sporobolus NS P = 0.0178 NS 

Andropogon P = 0.0248 NS NS 

Alloteropsis NS NS NS 

All data for the second year were combined to generate factors C02, water and 

species, in order to assess the significance of treatment effects in a community context 

using a three-way ANOV A. Results of the three-way ANOVA (Table 3.5) were very 

similar to results of the first year because effects of all three factors: C02, water, and 

species were significant (P = <0.001), with a significant interaction between CO2 and 

water treatments (P = 0.0198). A multiple comparison test performed on species 

revealed three categories of sprouting response, where Themeda is an early sprouter, 

Eragrostis, Sporobolus and Andropogon are intermediate, and Andropogon and 

Alloteropsis are late sprouters (Table 3.6). 
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Table 3.5: Results of a three-way ANOV A for C02 x water x species at the a = 0.05 
level. 

Due To 

Main Effects 

CO2 

Water 

Species 

2Wa Y Interactions 

C02)( Water 

02)( Species C 

Wa 

3Wa 

C02 ICWa 

ter )( Species 

Y Interactions 

ter )( Species 

Explained 

Error 

Total 

Sum of 
Squares DoF 

1673.202 6 

155.942 1 

134.311 1 

1394.183 4 

83.554 9 

47.968 1 

28.392 4 

7.141 4 

5.485 4 

5.485 4 

1762.241 19 

1191 .911 138 

2954.152 157 

Mean 
Square F-Stat Signi 

278.867 32.287 0.0000 

155.942 18.055 0.0000 

134.311 15.551 0.0001 

348.546 40.355 0.0000 

9.284 1.075 0.3852 

47.968 5.554 0.0198 

7.098 0.822 0.5134 

1.785 0.207 0.9343 

1.371 0.159 0.9587 

1.371 0.159 0.9587 

92.750 10.739 0.0000 

8.637 

18.816 

Table 3.6: Tukey-HSD multiple comparisons test for time to sprouting (days) in the 
second year for all treatments combined, and data classified by species at the a 
= 0.05 level. 

* denotes significantly different pairs and vertical bars show homogeneous subsets. 

Homogenous 
Group Mean Themeda Eragrostis Sporobolus Andropogon Alloteropsis subsets 

Themeda 20.84 * * * * I 

Eragrostis 26.35 * * I 

Sporobolus 27.00 * * I 

Andropogon 28.37 * II 

Alloteropsis 29.29 * * * I 

3.3.1.3. Time to sprouting in the third year 

A notable trend of the third year is that responses were influenced by CO2 treatments 

in all species except in Sporobolus, while water treatments had no significant effect 

on response of any of the species (Figure 3. l.c. and Table 3.7.). The earliest time of 

sprouting recorded was 18 days in Themeda under elevated CO2 + 120%MAR and 20 

days in the same species under elevated CO2 + MAR. The response time is almost a 
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replica of the previous year, only with a higher level of statistical significance for the 

C02 treatment (P = 0.0068). When a three-way ANOV A was performed on combined 

data (Table 3.8), the effect of CO2 treatments and species were statistically significant 

(P < 0.001) but effects of water treatments were not significant. Interaction of C02 

and water treatments was highly significant (P = 0.0099). Results of a multiple 

comparison test categorised by species revealed two classes of sprouting capacity, one 

with Themeda and another with the other four species (Table 3.9). 

Table 3.7: Statistical significance of treatment effects on time to sprouting in the third 
year. 

Species CO2 Water Interaction 
P = 0.0068 NS NS 

Themeda 
NS NS NS 

Sporobolus 
P = 0.0271 NS P = 0.0395 

Eragrostis 
P = 0.0346 NS NS 

Andropogon 
P = 0.0453 NS NS 

Alloteropsis 

Table 3.8: Results of a three-way ANOV A for CO2 x water x species at the a = 0.05 
level. 

OueTo 

Main Effects 

CO2 
Water 

Species 

2Wa y Interactions 

C02 ICWater 

02 IC Species 

ter IC Species 

C 
Wa 

3Wa 

C02 ICWa 

Y Interactions 

ter IC Species 

Explained 

Error 

Total 

Sum of 
Squares 

1356.759 

252.366 

17.051 

1090.623 

96.685 

74.616 

10.699 

21 .332 

24.901 

24.901 

1478.344 

1336.858 

2815.203 

Mean 
OoF Square F-Stat Signl 

6 226.126 20.805 0.0000 
1 252.366 23.219 0.0000 
1 17.051 1.569 0.2128 
4 272.656 25.086 0.0000 
9 10.743 0.988 0.4531 
1 74.616 6.865 0.0099 
4 2.675 0.246 0.9116 
4 5.333 0.491 0.7426 
4 6.225 0.573 0.6829 
4 6.225 0.573 0.6829 

19 77.808 7.159 0.0000 
123 10.869 

142 19.825 
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Table 3.9: Tukey-HSD multiple comparisons test for time to sprouting (days) in the 
third year for all treatments combined, and data classified by species at the a = 
0.05 level. 

* denotes significantly different pairs and vertical bars show homogeneous subsets. 

Homogenous 
Group Mean Themeda Sporobolus Era}!rostis Andropo}!on AlloteroTJsis subsets 

Themeda 2l.32 * * * * I 

* 
Sporobolus 26.89 I 

* 
Eragrostis 26.90 I 

* 
Andropogon 28.12 I 

* 
Alloteropsis 29.22 I 

After analysing for treatment effects on annual patterns of sprouting per species, it is 

necessary to do further analysis to determine if similarities and/or differences in time 

of sprouting per species among years are statistically significant. Data of the three 

years were combined for each species to generate the factors : CO2, water and year, 

and a three-way ANOVA was performed to determine the statistical significance of 

year of study (Table 3.10), CO2 and water treatments. Difference in the mean values 

of time of sprouting among the different years of study are greater than would be 

expected by chance after allowing for the effects of differences in CO2 and water (P = 

<0.001). A multiple comparison test was done to determine which year(s) differ from 

others. In all species, sprouting happened sooner in year one than in years two and 

three. There was no statistically significant difference in the time of sprouting in years 

two and three. In Themeda, sprouting occurred approximately three days earlier in 

year one compared to years two and three. In the other four grass species, sprouting in 

year one occurred approximately five to six days earlier compared to years two and 

three. 
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Table 3.10: Results of a three-way ANOVA for CO2 x water x year at the a. = 0.05 
level. 

Due To 

Main Effects 

CO2 

Water 

Season 

2Wa Y Interactions 

C02 Ie Water 

02 Ie Season 

ater Ie Season 

C 

W 

3Wa 

C02 leW 

y Interactions 

ater Ie Season 

Explained 

Error 

Total 

Sum of 
Squares 

921 .812 

78.248 

70.255 

661.566 

22.438 

9.017 

4.121 

6.889 

0.000 

34.533 

978.783 

635.640 

1614.424 

Mean 
DoF Square F-Stat Signi 

5 184.362 22.333 0.0000 

1 78.248 9.479 0.0029 

2 35.128 4.255 0.0177 

2 330.783 40.070 0.0000 

3 7.479 0.906 0.4422 

2 4.508 0.546 0.5814 
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Figure 3.1 (a-c): Treatment effect on time to sprouting of the grass species over three 
years. Error bars indicate standard error on this figure, and in subsequent 
figures throughout this Chapter. 
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3.3.2. Time to flowering 

Data are presented for only three of the five grass specIes used in the study 

(Eragrostis, Sporobolus and Themeda in Figure 3.2.a,b,c), because of either poor 

flowering or no flowering in Alloteropsis and Andropogon. Andropogon flowered 

rather poorly with a frequency of one or two plants out of eight plants per treatment in 

the first and second years. No flowering was recorded in that species in the third year. 

Alloteropsis and the geophyte did not flower in any of the three years. Eragrostis was 

the first species to flower about 75 days after application of treatments. Plants 

exposed to ambient C02 flowered earlier than plants exposed to elevated C02 (P = 

0.0002) (Table 3.11). Effect of watering treatments were not statistically significant in 

Eragrostis. A treatment combination of elevated CO2 + MAR induced early flowering 

in Themeda after 82 days, and effects of both C02 and water were statistically 

significant (P = 0.0093 and P = 0.0018 respectively) but there was no interaction. The 

flowering response of Sporobolus was similar to that of Themeda, but in Sporobolus 

the interaction of CO2 and water was significant (P = 0.0089). 

In the second and third years, flowering responses of Eragrostis and Themeda were 

very similar to the first year. In Sporobolus, effect of water treatments was not 

significant in the second year, and effect of CO2 treatments was not significant in the 

third year (Table 3.11). Data from the three years was combined for each species in 

order to perform a three-way ANOV A with factors CO2, water and year, to determine 

differences and/or similarities between years. Annual trends of flowering were similar 

in Eragrostis and Themeda. In Sporobolus, the flowering pattern of the first year was 

significantly different from the flowering pattern of the second and third year. 
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Table 3.11: Statistical significance of treatment effects on time to flowering 

Year Species CO2 Water Interaction 

1 Eragrostis P = 0.0002 NS NS 

1 Sporobolus P = 0.0173 P = 0.013 P = 0.0089 

1 Themeda P = 0.0093 P = 0.0018 NS 

2 Eragrostis P < 0.0001 NS NS 

2 Sporobolus P = 0.0120 NS P = 0.037 

2 Themeda P = 0.0018 P = 0.0006 NS 

3 Eragrostis P=O.OOll NS NS 

3 Sporobolus NS P = 0.0408 P = 0.0323 

3 Themeda P = 0.0013 P = 0.0001 NS 
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Figure3.2: Treatment effect on time to flowering of the grass specIes over three 
years. 
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3.3.3. Canopy structur e 

3.3.3.1 Community contribution to canopy structure in the first year 

Analysis of treatment effects on canopy structure was fIrstly done on total leaf 

biomass per treatment replicate without dividing the canopy into layers, and further 

analysis was done after dividing the canopy into layers. In the fIrst analysis, leaf 

biomass per treatment replicate was summed across species prior to a two-way 

ANOV A. Results of the ANOV A on the combined community leaf biomass (Table 

3.12) show a highly signifIcant effect of water treatment (P = 0.0044) and a 

signifIcant interaction of CO2 and water treatments (P=0.0431), while main effect of 

C02 treatment was not statistically signifIcant. 

Analysis of distribution of leaf biomass per layer per treatment shows a gradual 

decrease with canopy height (Figure 3.3), resulting in a canopy that is sparse at the 

top in the height ranges of 40-60 cm and >60 cm, becoming denser below 40 cm. 

Such a structure allows a degree of light penetration and interception by leaves in the 

lower part of the canopy. The most dense layer of leaf biomass is between 20 cm and 

the root crown. Data were also analysed to fInd out at which layers in the canopy the 

treatments had a signifIcant effect on leaf biomass. It emerged that C02 and water 

treatments, either singly or interactively, had no signifIcant effect on leaf biomass in 

the dense layers of the canopy, 5-20 cm and 20-40 cm (Table 3.12). However, higher 

up in the 40-60 cm and >60 cm layers, both main effects of CO2 and water were 

highly signifIcant (Table 3.12), resulting in more leaf biomass under the elevated C02 

+ MAR treatment in these layers (Figure 3.3). Thus, a treatment combination of CO2 

+ MAR affects canopy structure by increasing leaf biomass in the top part of the 

canopy. 
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Table 3.12: Statistical significance of treatment effects on canopy structure in the first 
year, expressed by layers and as total leaf biomass. 

Layer CO2 Water Interaction 
Combined leaf biomass of all 

layers NS P = 0.0044 P = 0.0431 

5-20 cm NS NS NS 

20-40 cm NS NS NS 

40-60 cm P = 0.0327 P = 0.0162 NS 

>60cm P = 0.0326 P = 0.0469 NS 

3.3.3.2. Species contribution to canopy structure in the first year 

Species contributions to leaf biomass in each layer were analysed and results are 

presented in Figures 3.4. a-d. Contributions per layer in each treatment are presented 

as absolute amounts in grams. Different species contributed different amounts of leaf 

biomass, and so it is important to assess the statistical significance of treatment effect 

on differences in species contributions within respective layers. That analysis was 

done by a three-way ANOV A, whereby data within a specific layer were combined to 

generate three factors viz., C02 treatments, water treatments and species. Whenever 

the differences in leaf biomass of the species were statistically significant, Tukey­

HSD multiple comparisons test was performed to show which species contributed 

different amounts of leaf biomass, and which species contributed similar amounts. 

Indeed, the differences in species were significant in each layer, and groupings of 

similar and different species will be discussed by layer. 

Starting at the bottom 5-20 cm layer, Sporobolus had the highest absolute leaf 

biomass of all the species under elevated CO2. A further slight enhancement of leaf 

biomass is observed in that species at MAR relative to 80%MAR, although the 

difference is not statistically significant. The order of proportional contribution in the 

bottom 5-20 cm layer under elevated CO2 treatments is as follows: Sporobolus > 

Andropogon > Eragrostis > Alloteropsis > Themeda (Figure 3.4.a). Under ambient 

CO2 treatments however, all five grass species contributed similar amounts of leaf 

biomass. Effects of CO2 and water treatments on species contributions to leaf biomass 
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in this dense layer are not statistically significant (Table 3.13). Results of a three-way 

ANOV A on combined data in this layer however, show highly significant differences 

in species (P <0.0001), and a multiple comparison test grouped contributions of 

Sporobolus as significantly different from contributions of Themeda, Eragrostis and 

Alloteropsis. 

Higher up in the canopy within the 20-40 cm layer, a positive effect of elevated C02 

on the contribution of Sporobolus was statistically significant (P=0.0233). Leaf 

biomass of Sporobolus was enhanced under elevated C02 + MAR compared with the 

other three treatments (Figure 3.4.b). Relative contributions of each species were 

more ordered in this layer than the previous one, possibly in a manner that correlates 

leaf biomass with species height. A multiple comparisons test in this layers classified 

proportional contributions of Sporobolus and Themeda as similar, and that pair was 

different from Alloteropsis and Eragrostis, and Eragrostis was in turn was different 

form Andropogon. Eragrostis did not grow beyond a 40 cm height, and it was the 

shortest of the five grasses at the field site where the plant material was collected. 

Themeda and Sporobolus were the dominants in the 40-60 cm layer across all 

treatments (Figure 3.4. c), and the contribution of each of the two species was highest 

under elevated CO2 + MAR. A multiple comparison test classified contributions of 

Sporobolus and Themeda as similar, but different from contributions of Alloteropsis 

and Andropogon. It was difficult to do meaningful analysis of data in the >60 cm 

layer because of a high incidence of missing values since most of the plants did not 

grow to that height (Figure 3.4.d). Andropogon, Sporobolus and Themeda are the only 

species that grew that tall, and of the three, Sporobolus made the highest contribution 

to leaf biomass. 
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Table 3.13: Statistical significance of differences in leaf biomass at different layers of 
the canopy in the first year due to (i) presence of different species (ii) C02, 
and (iii) water treatments analysed by a three-way ANOV A. 

Presence of 
Layer different CO2 Water Interaction 

Species 

5-20 cm P <0.001 NS NS NS 

20-40 cm P <0.001 NS NS NS 

40-60 cm P <0.001 P = 0.0120 P = 0.0046 NS 

>60cm P = 0.0224 NS NS NS 

3.3.3.3. Community contribution to canopy structure in the second year 

General community response pattern was analysed first as combined canopy leaf 

biomass and subsequently as layers of leaf biomass. Treatment effects on combined 

canopy leaf biomass were not statistically significant (Table 3.14). Results of a three­

way ANOV A on the other hand showed highly significant effects of CO2 treatment 

(P = 0.0208) and canopy layers (P < 0.001), but no significant effect of water 

treatment (P = 0.99). On the other hand, analysis of response of canopy layers can be 

summarised as an apparent slight increase in leaf biomass in the 5-20 cm and 20-40 

cm layers, which was accompanied by slightly reduced leaf biomass in the upper 

layers of 40-60 cm and >60 cm, relative to the previous year (Figure 3.5). Either of 

two factors viz. watering amounts increased by 20% across the board in the second 

year (Table 1, Chapter 2) or elevated CO2, or a combination of the two could have 

contributed to the observed changes in the pattern of distribution of leaf biomass 

within the canopy. Whatever the cause, it was certainly not carry-over effects from 

the previous year because all above-ground material was harvested at the end of the 

first year (unless the water saving benefit of elevated C02 had come into effect, which 

would then qualify as a carry-over effect). However, the observed responses to the 

treatments of the two bottom layers were not statistically significant (Table 3.14). 

The pattern of response among treatments in the 5-20 cm layer indicated the lowest 

leaf biomass value for the ambient CO2 + MAR treatment. Elevated CO2 enhanced 
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leaf biomass by small amounts in the 20-40 cm layer compared to the leaf biomass 

under ambient C02 treatments, but the differences were too small to be of any 

statistical significance (Table 3.14). Effects of watering treatments became apparent 

once more further up in the canopy within the 40-60 cm layer (P = 0.0379), as was the 

case in the first year. The amount of leaf biomass under elevated C02 + MAR was 

greater than amount of leaf biomass under all other treatments in the 40-60 cm layer. 

Interestingly, the amount of leaf biomass was more under ambient C02 + MAR than 

under elevated C02 + 120%MAR in this layer. That result may be indicative of the 

fact that elevated CO2 enhances leaf biomass only at rainfall values typical of the field 

site from which the grass community was derived. There were no significant 

treatment effects in the >60 cm layer although Figure 3.5 depicts greater amount of 

leaf biomass under elevated C02 + MAR. 

Table 3.14: Statistical significance of treatment effects on canopy structure in the 
second year, expressed by layers and as total leaf biomass. 

Layer CO2 Water Interaction 
Combined leaf biomass of all 

layers NS NS NS 

5-20 cm NS NS NS 

20-40 cm NS NS NS 

40-60 cm NS P = 0.0379 NS 

>60cm NS NS NS 

3.3.3.4. Species contribution to canopy structure in the second year 

The bulk of leaf biomass was in the bottom 5-20 cm layer for all grass species (Figure 

3.6.a). Sporobolus contributed the largest proportion of leaf biomass under elevated 

CO2 in both watering treatments, but there was slightly more leaf biomass under 

MAR than under 120%MAR. The positive effect of elevated CO2 on leaf biomass of 

Sporobolus was statistically significant (P = 0.0468). The response of Themeda on the 

other hand was not influenced by either C02 or water treatments, and even though 

leaf biomass of Themeda under ambient CO2 + MAR seems higher than in other 
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treatments (Figure 3.6.a), the difference is not statistically significant. The other two 

C4 species Eragrostis and Andropogon showed a response that was marginally 

statistically significant with respect to the high water treatment under ambient CO2 

(P = 0.0686 and 0.0542 respectively). C02 and water treatments had a weak 

interactive effect on the amount ofleafbiomass in Alloteropsis (P = 0.0773). 

Response pattern to C02 and water treatments in the 20-40 cm layer (Figure 3.6.b) 

depicts an increase in leaf biomass of Themeda across all treatments relative to the 

first year, but a very high level of variability meant that there were no statistically 

significant differences between treatments. The response of Sporobolus C02 and 

water treatments is similar to the trend observed in the 5-20 cm layer (Figure 3.6.a), 

but treatment effects were not significant. Responses of other species were also not 

influenced by treatments. Leaf biomass in the 40-60 cm layer was harvested from 

Sporobolus, Themeda and Andropogon in order of their proportional contributions 

(Figures 3.6.c and 3.6.d). There were no statistically significant treatment effects on 

leaf biomass above 40 cm, although the data indicate greater leaf biomass for 

Sporobolus under elevated CO2. 

3.3.3.5. Community contribution to canopy structure in the third year 

The most marked response in the third year was reduced canopy leaf biomass in all 

species, treatments, and layers relative to the previous two years. Most reduction in 

canopy leaf biomass was observed in the part of the canopy above 40 cm (Figure 3.7). 

A recurrent observation on canopy structure, that it is denser in the bottom 5-20 cm 

layer, becoming more sparse with increasing height, was noted. Effect of CO2 and 

water treatments on combined canopy leaf biomass was not statistically significant, 

(Table 3.15). Generally, the watering treatment of MAR resulted in slightly higher 

leaf biomass irrespective of C02 treatment in both the 5-20 cm and 20-40 cm layers. 

That response was most pronounced in the 20-40 cm layer, especially under elevated 

C02 than under ambient CO2 (Figure 3.7). The observation is supported by a 

statistically significant effect of CO2 and water treatments, as well as their interaction 

in the 20-40 cm layer (Table 3.15). C02 treatments did not have any effect on the 

amount of leaf biomass in the 40-60 cm layer, but a statistically significant effect of 

the watering treatment was apparent (Table 3.15), and there was no interactive effect 
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of C02 and watering treatments. There was very little leaf biomass above 60 cm and 

there were also no apparent treatment effects. 

Table 3.15: Statistical significance of treatment effects on canopy structure in the 
third year, expressed by layers and as total leaf biomass. 

Layer CO2 Water Interaction 
Combined leaf biomass of all 

layers NS NS NS 

5-20 cm NS NS NS 

20-40 cm P = 0.0140 P = 0.0018 P = 0.0144 

40-60 cm NS P = 0.0316 NS 

>60cm NS NS NS 

3.3.3.6. Species contribution to canopy structure in the third year 

An interesting shift in proportional contributions of species occurred such that the 

normal dominance of Sporobolus under elevated CO2 + MAR was lacking in the 5-20 

cm layer (Figure 3.6.a). However, leaf biomass of Sporobolus was highest under 

elevated CO2 + 120%MAR. Leaf biomass in Themeda within the 5-20 cm layer was 

higher under elevated CO2, with a slightly larger contribution in 120%MAR than 

MAR. Nonetheless, observed treatment effects on Themeda lacked statistical 

significance. Responses of other species also lacked statistical significance, including 

a particularly high leaf biomass response of Eragrostis under ambient CO2. 

Leaf biomass in the 20-40 cm layer and other layers above (Figures 3.6.b,c, and d) 

was characterised by the dominance of Themeda in most treatments. In the 20-40 cm 

and 40-60 cm layers, both Themeda and Sporobolus responded best under elevated 

C02 + 120%MAR, but Sporobolus was subordinate to Themeda. The 120%MAR 

treatment also enhanced leaf biomass, but only in the two upper layers of the canopy 

(Figures 3.6.c and d), and this result could imply that ample supply of water 

influences canopy structure by enhancing plant height. 
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Figure 3.3: Treatment effect on placement of leaf biomass in the first year. 
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Figure 3.6 (a-d): Treatment effect on placement of leaf biomass of each species in 
the second year. 
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Figure 3.8.a-d: Treatment effect on placement ofleafbiomass of each species in the 
third seas 
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3.4 Discussion 

The data have successfully fulfilled the main objective of this chapter by enabling 

characterisation of effect of elevated CO2 on canopy development (sprouting, 

flowering and senescence) and canopy structure (leaf distribution) of the C4-

dominated microcosm community. They also show which parameters of canopy 

development and canopy structure responses to elevated CO2 are dependent on water 

supply. Generally, elevated CO2 treatment caused early sprouting, early flowering, 

and delayed senescence, even though the responses were species specific, and 

sometimes dependent on water supply. Effect of elevated C02 on canopy structure 

was most apparent in upper canopy layers between 20-40 and 40-60 cm, because 

greater leaf biomass was produced in elevated C02 relative to ambient CO2 in these 

respective canopy layers. Response of community canopy structure (combined leaf 

biomass of all canopy layers) was not dependent on water supply at watering 

treatments higher than MAR. 

Responses of community sprouting show that early regrowth (sprouting) occurred 

under elevated CO2 in all three years, and was further enhanced by a higher water 

supply (MAR and 120%MAR), as indicated by a statistical test (Tables 3.2; 3.5; 3.8), 

while water treatment on its own had an effect only during first and second years. At 

the species level on the other hand, effect of CO2 treatment on sprouting was not 

dependent on water supply (Tables 3.1; 3.4; 3.7), except in Eragrostis in the third 

year. Elevated CO2 caused earlier sprouting in all grass species, but statistically the 

effect was significant for Themeda, Eragrostis, and Andropogon in all three years, and 

in Alloteropsis only in the third year, while effect of water treatment was statistically 

significant in Sporobolus in the first and second years. Sprouting response of the 

species was explicitly characterised by three groups, that categorise Themeda as an 

early sprouter, Eragrostis and Sporobolus as intermediate, and Sporobolus, 

Andropogon and Alloteropsis as late sprouters. 

Extrapolation of the sprouting data to field conditions suggests that future scenarios of 

high atmospheric CO2 will cause a big change in sprouting phenology at the 

Ngongoni grassland community, because at the field site, the C4 grass species 

Themeda and Eragrostis show mid- to late-season post-burn growth, while the 

Alloteropsis (C3) and Andropogon (C4) show early post-burn growth (Wand et al. 
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2002). Even though observations of Wand and co-workers (2002) on sprouting trends 

at the field site were made after an annual burn, while sprouting responses reported in 

this study occurred subsequent to end of year clipping and removal of litter, 

experimental evidence (Hulbert 1988) suggests that clipping and removal of litter can 

result in responses similar to those following fire. Therefore the observed results on 

sprouting are of interest because they are in contradiction with sprouting phenology of 

mixed grasslands, where cool-season C3 grass species sprout earlier than warm-season 

C4 grass species. This may suggest a response to greenhouse conditions, especially 

less extreme night time temperature causing C4 species to sprout earlier. 

Annual differences in time of sprouting were statistically significant (three-way 

ANOV A Table 3.10) and a multiple comparison test suggests that sprouting responses 

in year one differed from those of years two and three (both of which were similar). 

From an experimental design point of view, a major difference between year one and 

the subsequent two years was that water treatments in year one were 20% lower. But a 

lack of interaction between year and water treatment (Table 3.10) may suggest that 

annual differences in sprouting intervals were not dependent on water supply. On the 

other hand it may suggest acclimation to greenhouse conditions of less extreme night 

temperatures. 

It is noteworthy in the first year there was a difference of approximately five days 

between the earliest (Themeda) and last (Andropogon) recorded sprouting event 

(Table 3.3). In the second and third years (Tables 3.3 and 3.9), there was a difference 

of approximately nine days between the earliest and last recorded dates of sprouting. 

From the sprouting data alone, it is not easy to say if the observed intervals between 

dates of sprouting have any likely consequence for length of growing season. Length 

of growing season was assessed by time of loss of greenness. Qualitative observations 

made during each growing season allude to a two to three weeks delay in senescence 

in microcosms exposed to elevated CO2, but still there is insufficient evidence to 

attribute the delay in senescence (longer growing season) to time of sprouting. 

Delayed senescence in response to elevated CO2 has been reported in other grassland 

systems (Ham et al. 1995; Drake et al. 1996; Knapp et al. 1999) with important 

implication for increased production, but with potentially negative impacts on 

diversity if a subset of species benefit from delayed senescence. 
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Grass species maintain their populations by both vegetative and sexual reproduction, 

and vegetative reproduction is the dominant form of growth in semiarid and mesic 

African grasslands (Belsky 1992). The benefit of sexual reproduction is maintenance 

of genetic diversity, therefore, it is likely that experimental manipulations which alter 

flowering pattern can pose a threat to population recovery after large-scale abiotic 

stress or disturbance. On the other hand, if experimental manipulations induce 

repetitive flowering events during a growing season in some species, such a response 

may result in increased population diversity with a higher potential for recovery or 

resilience to large scale abiotic stress and disturbance. In this study, the objective of 

assessing flowering response to treatments was to understand phenological 

development, and possibly its implications for ecological and rapid evolutionary 

changes in the community. Results of this study suggest that grass species that tend 

not to produce reproductive shoots under elevated CO2 such as Alloteropsis and 

Andropogon may be under the risk of not maintaining genetic diversity. In South 

Africa, Themeda is already over-utilised, and consistent production of reproductive 

shoots under future scenarios of elevated CO2 may help to achieve its regeneration 

potential. The other two grasses Eragrostis and Sporobolus, which showed significant 

flowering response under elevated CO2 also stand a good chance of regenerating their 

populations as atmospheric CO2 increases. Seeds from different generations were not 

collected, hence inter-generational effects of elevated C02 were not studied. Some of 

the reported inter-generation effects of elevated CO2 in grasses include increased 

tillering and biomass production from first to second generation (Bezemer et al. 

1998). 

Treatment effect on reproduction phenology was assessed by noting time of 

flowering. Flowering is mainly controlled by photoperiod, but it can also be altered by 

other environmental variables such as precipitation and temperature. Anthesis 

occurred at mid-canopy development, and Eragrostis was the first species to produce 

open flowers, about 75 days after application of treatment. Because Eragrostis is a 

species of short stature, early flowering might be an important mechanism for 

achieving reproductive development prior to canopy closure and a consequent 

reduction in availability of light. Themeda started flowering at mid-canopy also, at 82 

days after application of treatments under elevated CO2 + MAR, and flowering 
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occurred about 10 days later in other treatments. Sporobolus flowered towards the end 

of mid-canopy at 108 days under elevated CO2 + MAR, and about 12 days later in 

other treatments. The above trends in response to treatments were similar for all three 

years, but there was a general delay in years two and three. 

Responses of canopy structure to elevated CO2 treatment was characterised by a 

higher production of community leaf biomass in upper canopy layers (height of about 

40 cm and above). Among the taller grasses, Sporobolus and Themeda were most 

responsive to elevated CO2 + MAR, and their respective leaf biomass in the 40-60 cm 

layer was equivalent to 50% of each of their leaf biomass in the dense basal layers (5-

20 cm or 20-40 cm); while contributions from Alloteropsis and Andropogon in the 40-

60 cm layer were each no more than 10-15% of their respective contributions in the 

dense basal layers (5-20 cm or 20-40 cm). 

The observed high contribution of leaf biomass production within upper canopy layers 

(above 40 cm height) by Sporobolus and Themeda demonstrates that a tall stature is 

an important adaptation for persistence in competitive and productive grasslands, 

owing to reductions in light with canopy depth. But on the other hand, grass species 

that respond to elevated CO2 by increase in height may be more susceptible to 

defoliation than species that retain a short stature such as Eragrostis. Response of the 

vertical structure of Alloteropsis and Andropogon showed no tendency towards tall 

stature, unlike their natural appearance in the field. Elevated CO2 generally caused an 

increase in canopy height in Sporobolus and Themeda during the first two years, but 

subsequently leaf biomass was reduced throughout the canopy in the third year, thus 

benefiting short stature Eragrotis whose leaf biomass increased. Also, a change in 

dominance of contribution to leaf biomass was observed in the third year relative to 

previous years. The most notable change occurred between Sporobolus and Themeda, 

whereby the latter species was a dominant contributor to leaf biomass in the part of 

the canopy above 20 cm. The highest contribution of Themeda occurred in all 

treatments in the 20-40 cm layer, and only under watering treatment of 120%MAR in 

the layers above 40 cm. Gain in dominance of Themeda over Sporobolus however, did 

not make up for reduction in canopy leaf biomass that accompanied loss in dominance 

of Sporobolus. 
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Structural dynamics in the bottom layers of the canopy included a dense presence of 

leaf biomass in the bottom layers below 40 cm in the fIrst and second years, and in the 

third year the most dense part of the canopy was at 20 cm and below. Lack of 

statistical signifIcance of treatment effects (C02 and water treatments or their 

interaction) on the amount of leaf biomass in the basal layer of the canopy suggests 

that important functional processes that are successfully maintained by dense lower 

canopy may not be altered by elevated C02. Ecosystem benefIts of a dense basal layer 

of a grass canopy include reduced evaporation loss and increased infIltration, thus 

improving soil water status. However, a drawback is that if a dense basal cover 

persists unmanaged by defoliation or fIre, it may impede tiller initiation of grass 

species that cannot tolerate shading (Everson et al. 1988), and perhaps subsequently 

induce conditions that are suitable for invasion by woody elements. 

From the collated data, it appears that canopy development (sprouting, flowering, and 

senescence) may be advanced by about one to one-and-a-half weeks in under future 

scenarios of high atmospheric CO2. Secondly, responses to elevated CO2 may be 

dependent on water supply at the community level but may not always be dependent 

on water supply at species level. Thirdly, trends in species competitive interactions 

may influence annual response at community level. 
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CHAPTER 4 

COMMUNITY PRODUCTION 

4.1. Introduction 

Net primary production is an important functional attribute of plant communities 

because it represents energy available within a system, and it sets a potential upper 

limit for all other processes. Increasing atmospheric C02 enhances net production 

significantly in the absence of competitive interactions (Poorter 1993; Wand et al. 

1999), hence consequences of production on carbon sequestration may also be 

affected by competitive interactions. Earlier speculation on responses of natural 

ecosystems to increasing atmospheric C02 was that competition would favour C3 over 

C4 species as a result of increased photosynthetic ability and reduced photorespiration 

in C3 species (Bazzaz 1990). However, field experiments have generally failed to 

confmn large increases in production (e.g. forest systems), and it therefore appears 

that the response of ecosystem production to elevated C02 would be overridden by the 

most limiting ecosystem resources (Field et al. 1992), which in most ecosystems are 

nitrogen or water. 

Data from the first ecosystem level study on a mixed C3 and C4 community (Curtis et 

al. 1989a) showed that elevated CO2 enhanced above-ground production of a C3 sedge 

but not of C4 grass species in a salt marsh ecosystem. Besides the fact that C4 species 

are saturated at an ambient C02 concentration of 350 ppm, Curtis and co-workers 

(1989b) associated the non-responsiveness of C4 grasses with a limited ability to 

mobilise nitrogen resources within the plant compared to C3 sedge used in that study. 

The initial response pattern in primary production of the salt marsh ecosystem, in 

which C4 grasses were non-responsive, was confmned through seven years of 

exposure to elevated C02 (Drake et al. 1996). Modelling analyses (Rasse et al. 2003) 

confmn that the high responsiveness of the C3 sedge to elevated C02 in the salt 

marsh, is attributed mainly to high foliage nitrogen concentrations. Meanwhile, a 

study on the tallgrass prairie ecosystem (Owensby et al. 1993, 1996, 1999) reported 

enhanced primary production of a dominant C4 grass species and a C3 forb, but no 

measurable increment in production of a C3 grass species after eight years of exposure 
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to elevated C02, contrary to predictions based on differences m photosynthetic 

pathway. 

Collective data on response patterns of natural ecosystems to elevated C02 challenged 

the notion of C4 non-responsiveness. Consequently, it has been established that 

outcomes of species competitive interactions cannot be generalised along biochemical 

and photosynthetic differences in C3 and C4 functional types (Wand et al. 1999). The 

meta-analysis by Wand et al. (1999) illustrated that both C3 and C4 functional types 

are susceptible to reduced production under conditions of limited resources. Water 

stress causes a reduction in the stimulation of leaf area by CO2 in C4 species, while 

overall stress reduces rate of carbon assimilation in C3 species and nutrient stress 

particularly reduces biomass response in C3 species. Water is a limiting resource in 

many grassland ecosystems, and predictions that climatic change associated with 

increased atmospheric CO2 may be accompanied by variable rainfall in South Africa 

(Ellery et al. 1991) necessitates an understanding of how production of the grassland 

ecosystem will respond to the predicted changes in atmospheric CO2 and water 

availability. 

In Chapter 3, an outline of treatment effects on canopy structure and phenology was 

given. In the present chapter, the analysis is taken further to determine treatment 

effect on community production, thereby integrating all components representative of 

the potential energy available within communities under different treatments. The 

objective will be achieved by addressing two key questions, namely:-

(i) Will elevated CO2 change above-ground biomass production at community 

and species levels, and below-ground biomass production at community level? 

(ii) To what extent will biomass production (community above- and below-ground 

and species above-ground) be dependent on watering treatment? 

(iii) Will C02 response depend on watering treatment? 

4.2. Materials and Methods 

The methods used in this study placed emphasis on end of year above-ground 

production in three consecutive years, and total below-ground production at the end of 

a three-year period. Harvest procedures are outlined separately for biomass of above­

ground parts of the grass species, litter, crown material, roots, biomass of the 
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geophyte, and the amount of soil organic matter. Results for different biomass units 

have been presented in separate sections. 

4.2.1. Above-ground production and litter 

Above-ground biomass was quantified by a stratified harvest method per plant per 

species. Biomass layers were harvested starting at a plant height-range of 60 cm and 

above followed by 40 - 60 cm, then 20 - 40 cm, ending at 5 - 20 cm. Harvest dates 

for the first, second and third years were 8th - 14th June 1999, 15th - 21 st July 2000 and 

23 rd 
- 28th July 2001 respectively. Harvesting commenced at pot 1 and continued 

progressively through to pot 16. Plant material from each layer of each plant was 

bagged separately, labeled and oven-dried at 70°C for two days to reach a constant 

mass. Dried plant material was separated into a leaf component and a stem plus floral 

parts component, and each component was weighed separately. Community above­

ground production and species contributions to above-ground production were 

quantified as averages of four treatment replicates. 

Care was taken when handling plant pots and chambers to minimise incidents of 

breaking plant parts, at the same time avoiding affecting the natural process of litter 

accumulation. Litter that accumulated on the soil surface of each pot was hand­

picked, bagged and labeled by pot number without separating by species or plant part. 

Litter that fell to the floor of the greenhouse during the course of the growing season 

was hand picked and bagged by pot number as it fell, to be combined with other litter 

at [mal harvest. Drying of litter was done as for above-ground biomass, followed by 

weighing. 

4.2.2. Crown and below-ground production 

Crown and root biomass were quantified at [mal harvest from 2nd 
- 8th August 2001. 

Harvest of root biomass was performed in a manner that allowed for determination of 

root density with depth, and an estimate of total community root biomass. Harvest of 

below-ground parts enabled observations on the degree of soil compaction, and 

activity and survival of earthworms that were added to the soil at the beginning of the 

experiment. Each plant pot was demarcated into halves, ensuring equal representation 

of plant species. One half of a pot was used to determine root density at three depths 

by extracting horizontal soil cores. Additional vertical soil cores were obtained from 



Chapter 4 Community Production 72 

the same half of plant pot for determining soil organic matter content (section 4.2.3). 

It was important to remove soil cores from intact pots to ensure minimal disturbance 

to the soil structure. To enable removal of horizontal soil cores, a key-hole saw was 

used to make 3 cm diameter holes at three depths on the outer side of the first half of 

each pot at marked positions directly below each grass crown. Two hundred and forty 

horizontal soil cores were collected, representing four replicates of four treatment 

groups for each of the five grass species at three depths. Root material in the soil cores 

was separated from soil by sieve-washing. Washed roots were oven-dried to a 

constant mass at 70°C and weighed to determine treatment effect on root density with 

depth. 

Plant pots were split into halves, and the 5 cm stubble of grass crown that remained 

subsequent to harvest of above ground biomass were separated from root material on 

the two halves of each pot. Identification of crown material by species was aided by 

attached plant labels. Excess soil was shaken off the crowns, which were individually 

placed in labeled bags, oven-dried to a constant mass at 70°C, and weighed. 

Differences in total crown biomass per treatment would be taken as potential 

indicators of treatment effect on reserve accumulation at the end of the year. 

Sampling for community below-ground production was done on the second half of 

each pot. All roots were separated from the soil by sieve-washing and allowed to drain 

sufflciently before placing them in bags labeled by treatment and pot number. The 

roots were oven-dried to a constant mass at 70°C and weighed. The recorded root 

mass of each half pot was multiplied by two to estimate pot totals. Community below­

ground production was estimated as an average of the four replicates per treatment. 

4.2.3. The geophyte - Eriospermum mackenii (Hook. f.) Baker, subsp. mackenni 

Above-ground biomass of the geophyte was harvested at end of each year, at the same 

time as above-ground biomass of the grasses (section 4.2.1.). Leaf material was oven 

dried to a constant mass at 70°C, and weighed. The species of geophyte used in the 

experiment (Eriospermum mackenii Hook. f.) Baker, accumulates a small above­

ground biomass, which comprises no more than two to five leaves (Perry 1994). 

Starting fresh mass of the main organ, the bulb, was measured at the beginning of the 

experiment. Treatment effects on growth of the bulb were assessed at [mal harvest. 
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Bulbs were separated from soil, washed, and their fresh mass recorded for comparison 

with starting fresh mass to determine treatment effects on the capacity for reserve 

storage. Bulbs were subsequently oven-dried and weighed to compare water content 

at the end of experiment with samples dried and weighed at the start. 

4.2.4. Soil organic matter content 

Soil organic matter was quantified at final harvest at the end of the third year. Pots 

were divided into two, one half for estimating total community measurements, and the 

other half for species-specific measurements. Sampling was performed on the half of 

plant pot designated for determining root density with depth (section 4.2.3). Five 

vertical soil cores of 0.14 dm3 (3 cm diameter by 20 cm length) were collected 

randomly, and placed in brown paper bags labeled by pot number. Large roots were 

removed from samples by passing the soil through a 2 mm sieve, prior to determining 

soil organic matter content by loss of mass on ignition (Allen 1989). A small sample 

of preweighed oven-dried soil was ignited in a muffle furnace at 850°C for 30 

minutes, cooled and weighed (McRae 1988). The amount of organic matter was 

determined as the difference in mass of soil before and after ignition. The procedure 

was repeated about two to three times to ensure that combustion was complete. 

4.2.5. Data analysis 

Biomass produced during the year will depend on the initial biomass of the crown, as 

well as on the treatment. Biomass of the crown could not be determined at the 

beginning of the each year because it is a destructive measure. However, if it is 

assumed that the amount of above-ground biomass produced is related to the amount 

of crown material, then the above-ground biomass at the end of the previous year can 

be taken as an indicator of crown mass at the beginning of the next year. Thus 

expressing above-ground biomass accumulated during the year relative to the above­

ground biomass at the end of the previous year should overcome the problem of 

differing crown biomass among replicates within a treatment. The above-ground 

biomass of each plant removed after initial planting was labeled Bo, and that at the 

end of the first, second and third years BJ, B2 and B3, respectively. Growth over a 

year, accounting for initial crown biomass was then expressed as BIlBo, B2/B I, and 

B3/B2 for the first, second and third years. A ratio greater or less than 1 would serve as 
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an indicator of whether treatment effects caused an enhancement or reduction in 

production over the study period. 

Data analysis was aimed at elucidating main and interactive effects of C02 and water 

on community production and on annual changes in production by performing two­

way ANOV A tests. In instances where variables were ratios, data were transformed 

prior to the ANOV A (Zar 1984). Assessment of treatment effects on species 

contributions to production involved use of "species" as a third factor in addition to 

C02 and water. Five grass species were used in the microcosms, hence the factor 

"species" had five levels. In the case of treatment effects on root density with depth, 

the factor "depth" had three levels. If an ANOV A indicated significant effects of a 

factor with more than two levels, Tukey-HSD (Highly Significant Difference) 

Multiple Comparison test was performed to fmd out which of the levels were 

significantly different. 

Cumulative above-ground production at the end of years two (BJ + B2) and three (BJ 

+ B2 + B3) was computed, and statistically analysed by two-way ANOV A. However, 

water treatments changed in each of the three year, and therefore, the effective 

accumulated water treatment on cumulative above-ground production at the end of 

years two and three was an average of water treatments of the respective years as 

illustrated in Table 4.1. Water treatments lower than MAR are referred to as low 

water, and water treatments higher than MAR are referred to as high water. 

It is important to note that water treatments will be expressed slightly differently for 

biomass units that were quantified only at the end of the third year, such as below­

ground biomass and crown biomass, but which had been exposed to water treatments 

of all three years. The effective water treatments at harvest will be as shown in Table 

4.1. 
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Table 4.1: Effective water treatment resulting from changes ill annual rainfall 
treatment and manner of application. 

Year Rainfall amount (mm) 
CO2 and water Stochastic Stochastic 

treatments 80%MAR MAR 
1998/1999 (low water) , (high water) "-

~ Regular ~ Regular 
1999/2000 MAR 120%MAR 

(low water) '" V (high water) 
Regular I ~ Regular 

2000/2001 MAR 120%MAR 
(low water) (high water) 

Effective water 11 0 %MAR 90%MAR 
treatment at end (high water) (low water) 

of year 2 
Effective water 107%MAR MAR 

treatment at end (high water) 
of year 3 

4.3. Results 

4.3.1. Response of community above-ground production 

4.3.1.1. 1 st Year 

The highest community average above-ground production was recorded for the high 

C02 + MAR treatment at 74.5 g, which is equivalent to 467 g m2 (Figure 4.1.a), and 

values of production in the other three treatments ranged between 54 g to 60 g 

(equivalent to 340-377 g m2). The main effects of CO2 concentration and water 

treatment as well as their interactive effect were highly significant (P = 0.040,0.0024 

and 0.018 respectively). Leaf and stem production was affected by treatments in 

different ways (Figs 4.1.b and c). The main effect of CO2 was significant on 

community leaf biomass (P = 0.0008) but effect of water treatment was not significant 

(P = 0.2170). There was a significant interactive effect of CO2 and water (P = 0.0003) 

on community leaf biomass. The fraction of stem biomass was highest under ambient 

C02 and MAR (Fig 4.1.c), and an ANOV A test on that result showed a highly 

significant effect of water (P < 0.001) and CO2 (P = 0.0283) but no interaction (P = 

0.0632). 
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A comparison of above-ground production at the end of year one with above-ground 

biomass at the start of the experiment (BIlBo) showed biomass accumulation above 

that at start of the experiment under all treatments (Fig 4.1 .d), and relative increase in 

production under elevated C02 + MAR was significantly higher than the increase 

under other treatments (P = 0.049, 0.005 and 0.024 for CO2, water, and their 

interaction respectively). One would have expected no change in biomass production 

under the control treatment (ambient C02 + MAR) at end of year one compared to the 

starting biomass. Except for the disturbance of transplanting, perhaps the warmer 

microclimate in the chambers relative to field conditions, caused the observed 

difference in values of control biomass between the field and microcosms. 

4.3.1.2. 2nd Year 

Community above-ground production was highest under elevated C02 + MAR (for a 

second consecutive year), possibly indicating a requirement for an optimum amount 

of water for the effect of elevated C02 on production to become apparent. The 

recorded value of 79.9 g (503 g m2) under elevated CO2 + MAR in the second year 

(Figure 4.2.a) was slightly higher than the value recorded in the first year under the 

same treatment (Figure 4.l.a). However, communities that were exposed to elevated 

CO2 + MAR in the second year had been exposed to elevated CO2 + 80%MAR in the 

first year. Results of an ANOV A nonetheless showed no significant main effects of 

either C02 and water, or their interactive effect in the second year. Dividing 

production into leaves and stems indicated stimulatory effects of elevated CO2 on leaf 

biomass (Figure 4.2.b) and MAR on stem biomass (Figure 4.2.c), even though not in a 

statistically significant manner. 

A comparison of community above-ground production at end of the second year 

relative to above-ground biomass at the end of the first year (B2/B I ) showed an 

increment under three treatments, while a slight reduction in biomass occurred under 

one treatment (Figure 4.2.d). Changes in water treatment from MAR to 120%MAR 

effected a small increment of 5% in production under ambient CO2 and a 7% 

reduction in production under elevated C02, while a change from 80%MAR to MAR 

effected a 15% increment in production under ambient CO2 and 47% under elevated 

CO2. A 7% decrease in production when water treatments changed from MAR to 

120%MAR under elevated CO2 does not necessarily imply that excessive water 
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availability under elevated COz inhibits growth. A two-way ANOV A on transformed 

Bz/B\ ratios showed a highly significant effect of water (P = 0.007) but not of COz (P 

= 0.340), and significant interactive effects ofCOz and water (P = 0.047). 

Cumulative above-ground production of years one and two; B\ + Bz (Fig 4.2.e) was 

marginally influenced by COz treatment (P = 0.054). Cumulative biomass was higher 

under elevated COz irrespective of effective average water treatment, but there was 

not effect of water treatment. Similarly, (B\ + Bz)/Bo was marginally influenced by 

COz treatment (P = 0.0590), and there was no effect of water. 

4.3.1.3. 3rd Year 

Production was substantially lower at the end of the third year than it had been in 

years one and two (Figure 4.3.a), and treatment effects were not statistically 

significant. The highest production was recorded under elevated COz + MAR 

treatment as was the case in the first and second years (Figures 4.1.a and 4.2.a). 

Figure 4.3.b shows treatment effects on leaf production, and that parameter was 

affected by a weak interaction of COz and water (P = 0.0593). Stem biomass was also 

not affected by treatments in a statistically significant manner. 

Cumulative above-ground production of the three years; B\ + Bz + B3 (Figure 4.3 .c) 

was significantly influenced by C02 treatments (P = 0.0249), but effect of water 

treatment was not significant (P = 0.4). As was the case at the end of the second year, 

cumulative biomass production at the end of the third year was higher under elevated 

COz than under ambient COz irrespective of effective average water treatment. 

Production at the end of year three relative to year two (B3/BZ ratio), was not 

statistically different among treatments, and in fact was characterised by an 11 % 

reduction. Even though community biomass at end of the third year was lower than in 

the two previous years, still there was a degree of stimulation on biomass production 

(B3/BO ::::: 1.5) compared to biomass at start of the experiment. However, treatment 

effects on (B3IBO) were not statistically significant. 
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Figure 4.l.a: Treatment effect on community above-ground production at the end 
of season one. 
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Figure 4.l.b: Treatment effect on community leafbiomass at the end of season one. 
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Figure 4.1.c: Treatm ent effect on community stem bi omass at the end of season one. 
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Figure 4.2.h: Treatment effect on community leafbiomass at the end of season two. 
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Figure 4.2.c: Trealm ent effect on community stem bi omass at the end of season two. 
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Figure 4.3.a: Treatment effect on community above-ground production at end of 
season three 
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Figure 4.3.b: Treatment effect on community leafbiomass at the end of season three 
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4.3.2. Community litter 

Average annual litter production in the microcosms was 6 g per unit ground area of 

0.159 m2
, which is equivalent to 38 g m-2

. In all three years, no significant main 

effects of CO2 and water treatments on litter production, or their interaction were 

noted (Figures 4.4.a-c). A higher amount of litter was collected in the second year 

compared to first and third years, and similarly, higher community production was 

recorded for the second year in all treatments compared to the first and third years. 

There were no significant differences in cumulative litter among the treatment groups 

as shown in (Figure 4.4.d.). Data on litter production was not included in the analysis 

of community above-ground production (Section 4.3.1) in order to avoid inherent 

difficulties of precisely sorting litter derived from leaves and parts of the crown. 

However, litter production has been included in the analysis of community cumulative 

biomass production (Section 4.3.6), where all biomass components have been 

combined. 
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4.3.3. Species contribution to above-ground production 

Analysis of above-ground production by species serves to identify key speCIes 

contributing towards ecosystem production, to assess treatment effects on species 

competitive interactions, and to highlight potential trends in population dynamics as a 

consequence of elevated C02. The corollary of species responsiveness to elevated 

CO2 is enhanced production, which for some species might be accompanied by 

changes in carbon allocation that influence competitive interactions, whereby 

aggressive competitors become dominant in the community. Following a quantitative 

analysis, a qualitative description of species contributions to production will be given 

as either high, intermediate, or low for grasses. 

4.3.3.1. 1st Year 

Biomass contributions of Sporobolus and Themeda to community production were the 

highest, and biomass contributions of Alloteropsis, Andropogon and Eragrostis were 

low (Fig 4.5.a). Results of a three-way ANOV A showed that C02 treatment did not 

have a significant effect (P = 0.186) on species contributions, but effects of water (P = 

0.030) and species (P = <0.001) were statistically significant. There was no 

interaction between C02 and water (P = 0.090) and between water and species (P = 

0.446), but there was a statistically significant interaction between CO2 and species (P 

= 0.020). Results of a multiple comparison test presented in Table 4.2 confirmed two 

categories of species, with Sporobolus and Themeda in a category of high 

contributions and A lloteropsis , Andropogon and Eragrostis in a category of low 

contributions. Data on leaf and stem biomass fractions showed that Themeda allocated 

more biomass to stems and reproductive parts than Sporobolus. On the basis of total 

species biomass, Sporobolus was more competitive than Themeda. 

4.3.3.2. 2nd Year 

Sporobolus and Themeda were again the dominant contributors to above-ground 

production, and contributions of the other three species; Alloteropsis, Andropogon and 

Eragrostis, were lower (Fig 4.5.b). Treatment main effects were not statistically 

significant for CO2 (P = 0.368) or water (P = 0.710), but contributions of different 

species were significantly different (P < 0.0001). A multiple comparison test placed 

contributions of five grass species into two categories (Table 4.3). Among the species 
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making lower contributions to production, Eragrostis gained a slight competitive edge 

over Alloteropsis and Andropogon, despite a general trend of decline in biomass in 

that category. 

Themeda was a dominant competitor under ambient C02 and MAR with a biomass 

increment of 54.4% compared to the fIrst year. A slightly higher proportion of the 

increment in biomass was allocated to the stem fraction including floral parts. 

Themeda responded better at MAR irrespective of C02. Sporobolus on the other hand 

had a preference for a higher watering treatment of 120%MAR, interacting with 

elevated CO2 to enhance biomass. 

4.3.3.3. 3rd Year 

There was a general decline in biomass of all species compared to the fIrst and second 

years (Fig 4.5.c). Main effects of CO2 and water treatments were not statistically 

signifIcant (P = 0.5286 and 0.6522 respectively), but contributions of different species 

were signifIcantly different (P < 0.0001). A multiple comparison test on species 

showed that Themeda was the most competitive species, and biomass contribution of 

Sporobolus was reduced from high to intermediate as was Andropogon and 

Eragrostis, while contribution of Alloteropsis was reduced to low (Table 4.4). 
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Figure 4.5. a-c: Species contribution to above-ground production in fIrst, second and 
third years respectively. 



Chapter 4 Community Production 90 

Table 4.2: Multiple Comparisons for community above-ground production of the first 
year classified by species using 95% Tukey-HSD interval (* denotes 
significantly different pairs and vertical bars show homogeneous subsets). 

Homogenous 
Group Cases Mean Eragrostis Alloteropsis Andropogon Themeda SporoboJus subsets 

Eragrostis 16 6.7108 · · I 

Alloteropsis 16 6.8966 · · I 

Andropogon 16 10.3845 · · I 

Themeda 16 16.8938 . . . I 

SporoboJus 16 20.2030 . . . I 

Table 4.3: Multiple Comparisons for community above-ground production of the 
second year classified by species using 95% Tukey-HSD interval (* denotes 
significantly different pairs, and vertical bars show homogeneous subsets). 

Homogenous 
Group Cases Mean Alloteropsis Andropogon Eragrostis Themeda SporoboJus subsets 

Alloteropsis 16 6.0108 · · I 
Andropogon 16 6.0108 · · I 
Eragrostis 16 8.3607 · · I 
Themeda 16 25.4517 · . · I 
SporoboJus 16 26.2202 · . · I 

Table 4.4: Multiple Comparisons for community above-ground production of the 
third year classified by species using 95% Tukey-HSD interval (* denotes 
significantly different pairs, and vertical bars show homogeneous subsets). 

Group 
Homogenous 

Cases Mean Alloteropsis Andropogon Eragrostis SporoboJus Themeda subsets 

Alloteropsis 16 1.1053 · . · I 
Andropogon 16 5.6175 · II 
Eragrostis 16 8.5190 · · I 
SporoboJus 16 11 .2816 · · I 
Themeda 16 23.5031 · . · . I 
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4.3.4. Response of the crown material 

A two-way ANOV A of treatment effects on community crown biomass showed a 

high statistical significance of treatment main effects (P = 0.0125 for CO2, and P = 

0.0086 for water treatment), but no interaction (P = 0.4178) as shown in Figure 4.6.a. 

The result implies that differences in mean crown biomass values among ambient and 

elevated CO2 groups is greater than would be expected by chance after allowing for 

effects of differences in water, and that differences in mean crown biomass values 

among high water (107%MAR) and MAR is greater than would be expected by 

chance after allowing for effects of differences in CO2. Lack of a statistically 

significant interaction between C02 and water (P = 0.418) means the effect of 

different levels of C02 does not depend on what level of water is present. The data 

suggest that communities under elevated C02 and high water allocate reserves to the 

crown. A benefit of such mobilisation would be enhanced recovery of C4 grassland 

communities following a disturbance. 

Further analysis was done by including species as a third factor, and the results 

showed statistically significant main effects of CO2 (P = 0.048), water (P = 0.025) and 

species (P = <0.001). However, there was not a statistically significant interaction 

between (i) CO2 and water (P = 0.600), (ii) C02 and species (P = 0.133) and (iii) 

water and species (P = 0.546). Analysis on species basis showed a significant CO2 

effect only on Sporobolus (P = 0.018) and a marginally significant effect of water on 

Andropogon (P = 0.056). Species averages are plotted in Figure 4.6.b. A rank of grass 

species by crown biomass was as follows: Eragrostis > Sporobolus > Themeda > 

Andropogon >Alloteropsis. A consideration of these results raises the question of 

whether grass species that respond to elevated CO2 by development of new tillers 

would have larger crowns than grass species that respond through development of leaf 

area, and what the long-term benefits of either mode of response would be with 

regards to competition. 
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4.3.5. Below-ground responses 

4.3.5.1. Community total below-ground biomass 

The amount of below-ground biomass accumulated at the end of the experiment was 

highest in the high C02 + 107%MAR treatment (Figure 4.7), although the main 

effects of C02 and water were not significant (P = 0.2656 and P = 0.7330 

respectively), neither was their interaction (P = 0.3000). 
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Figure 4.7: Treatment effect on community below-ground biomass 



Chapter 4 Community Production 94 

4.3.5.2. Response of root density with depth 

Root distribution was significantly influenced by depth (P < 0.0001) and watering 

treatments (P = 0.032), but the effect of C02 was not significant (P = 0.66), neither 

were interactive effects of C02, water and depth. Communities that were exposed to 

average MAR invested more carbon below-ground, particularly in the top layer 

(Figure 4.8.a), thereby enabling effective water acquisition during and following a 

watering event. Almost 50% of the roots were in the top layer under all treatments, 

and there were no significant differences in root density between the middle and 

bottom layers. A low rooting density in the bottom layer was indicative of grass roots 

avoiding the clay layer despite increased water availability there. Data obtained from 

soil moisture probe measurements showed increased accumulation of soil water in the 

bottom and clay layers of the soil (section 5.2). 

When all root density data were pooled irrespective of depth and plotted against 

treatment (Figure 4.8.b), the trend of high root density in response to MAR which was 

observed only within the top layer in Figure 4.8.a, was observed in Figure 4.8.b, 

although the statistical significance of the response was not maintained (P = 0.09). 

Differences between response of root density to treatment (Fig 4.8.b) and response of 

community below-ground biomass to treatment (Fig 4.7.) could be explained by 

differences in the sampling method. Sampling for community root biomass required 

use of the entire plant pot, while sampling for root density was done form a soil core 

below the crown. Perhaps root densities differ below the plants and between plants. 

Analysis of top layer root density data using species as a third factor in addition to 

C02 and water treatments, showed a significant effect of water and species (P = 

0.0008 and 0.0098 respectively) and no effect of CO2 (P = 0.62). Differences in 

response among species in the top layer were tested using Tukey-HSD multiple 

comparisons (Table 4.4) which showed that Andropogon responded differently from 

either Themeda or Eragrostis. The three factors did not have interactive effects on 

root density in all three layers. In the middle layer, differences in response to CO2 

treatment were significant (P = 0.0236), but effects due to water treatment or presence 

of different species were not significant (P = 0.1987 and 0.8940 respectively). There 

were no significant differences in the response in the bottom layer. 
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Table 4.4: Multiple comparisons for root density in the top layer classified by species 
using 95% Tukey-HSD interval (* denotes significantly different pairs, 
vertical bars show homogeneous subsets). 

Group 
Cases Mean 

Themeda 16 2.7358 

Eragrostis 16 3.0166 

Sporobolus 16 4.1004 

Alloteropsis 16 5.3042 

Andropogon 16 6.4377 

Themeda Eragrostis Sporobolus 

* * 

Alloteropsis Andropogon 

* 

* 

I 

I 

I 

I 

Homogenous 
subsets 
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4.3.6. Community total above- and below-ground production of the grass species 

Having analysed treatment effects on separate biomass fractions, further analysis of 

treatment effect on total production over the entire period of study was done by 

adding accumulated three years above-ground biomass, below-ground biomass, and 

biomass of the crown. It is important though to note that the data presented in this 

analysis will be influenced by the initial size of the crown and below-ground biomass 

at the start of the experiment in the following manner. Part of the crown and below­

ground biomass that was measured at [mal harvest was present at the start of the 

experiment, hence it is not really part of the production over the three year period. 

Nonetheless, results of a two-way ANOV A performed on the accumulated community 

production show a statistically significant effect of CO2 treatments (P = 0.0407). 

There was no significant effect of water treatments, and there was no interaction of 

C02 and water treatments. Accumulated community production under elevated C02 + 

107%MAR treatment was 19% and 21 % higher than accumulated community 

production under ambient CO2 + MAR and ambient CO2 + 107%MAR respectively 

(Figure 4.9). Enhancement of accumulated community production under elevated CO2 

+ 107%MAR was 14% higher than under elevated CO2 + MAR. 
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4.3.7. Response of the geophyte - Eriospermum mackenii (Hook. f.) Baker, subsp. 

mackenni 

Data on absolute above-ground biomass of E. mackenii are presented as mean ± 

standard error per treatment in Table 4.5. The above-ground biomass of E. mackenii is 

notably small at no more than Ig dry mass, compared to approximately 15g dry mass 

of the below-ground tuber. In the fIrst year, above-ground biomass was similar among 

all treatments (Table 4.5). Speculation on lack of a growth response in above-ground 

plant parts is that the geophyte prioritises carbon allocation to the tuber. In the second 

and third years, there was an increase in above-ground biomass compared to the fIrst 

year. Even though C02 and water main effects were not statistically signifIcant on 

above-ground biomass production in the second year (P = 0.4263 and 0.1483 

respectively), there was a statistically signifIcant interaction (P = 0.0183). In the third 

year however, neither the main effects of C02 or water treatment (P = 0.7843 and 

0.0738 respectively) nor interactions (P = 0.0963) were signifIcant on above-ground 

biomass production. Furthermore, the increase in above-ground biomass was not 

similar for all treatments in the second and third years. For instance, the lowest 

production of biomass in the second year was recorded under elevated CO2 + 

120%MAR, while slightly higher production was recorded in the other three 

treatments (Table 4.5). The pattern of response was reversed in the third year, 

whereby a higher increment was observed under elevated CO2 + 120%MAR, than the 

other three treatments. It is tempting to speculate that differences in patterns of 

biomass accumulation above-ground may be a mimetic expression of development in 

the bulbs. Lack of treatment effects on above-ground biomass was apparent even on 

the basis of three year accumulation. 

Below-ground biomass at [mal harvest had increased by different amounts under 

different treatments ranging between 6-11 % (Figure 4.10.). The highest increase in 

mass of the bulb was under elevated CO2 + MAR average water treatment. Water 

treatments seemed to influence responses under both ambient and elevated C02, 

because biomass increase under MAR was higher than under 107%MAR under both 

ambient and elevated CO2. Water content of bulbs at harvest was similar for all 

treatment, at a value of 65-68%. Those values were not different from a mean value 

of 69% recorded at the start of the experiment. 
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Table 4.5: Annual above-ground production of the geophyte under different 
treatments. No treatments had a statistically significant effect on above-ground 
biomass when tested at a = 0.05. Mean value are recorded with standard 
errors. 

Treatment 

Year CO2 Water Biomass (g) 

Year 1 Elevated MAR 0.l8 ± 0.04 

Elevated 80%MAR 0.20 + 0.07 

Ambient MAR 0.l9 + 0.09 

Ambient 80%MAR 0.l9 ± 0.04 

Year 2 Elevated 120%MAR 0.37 + 0.l1 

Elevated MAR 0.87 + 0.13 

Ambient 120%MAR 0.78 + 0.l1 

Ambient MAR 0.64 + 0.l1 

Year 3 Elevated MAR 0.20 + 0.08 

Elevated 120%MAR 0.54 + 0.012 

Ambient MAR 0.32 + 0.03 

Ambient 120%MAR 0.34 + 0.09 
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4.3.8. Soil organic matter content 

After three years of treatment application, there were no differences in soil organic 

matter content of all four treatment groups, with mean values ranging between 7.5 and 

7.7 percent (Figure 4.11.). 
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Figure 4.11: Mean percent soil organic matter content per treatment 

4.4. Discussion 

The experiment set out to investigate what effect elevated CO2 will have on above­

ground biomass production at community and species levels, and on below-ground 

biomass production at the community level. A second objective was to investigate 

whether C02 response of biomass production (community above- and below-ground, 

and species above-ground) is dependent on watering treatment. 

Community above-ground biomass was greater under elevated CO2 + MAR than any 

other treatment combination in the first, second and third years of the experiment. 

However, when the responses are considered at the 95% significance level, main and 

interactive effects of C02 and water were highly significant only in the first year. To 

illustrate the purported optimum biomass response under elevated C02 + MAR 

observed in all the three years of the study, average biomass data of the three years 

were plotted against water treatment (Figure 4.12). A two-way ANOVA was 

performed on the data pooled over three years, and the effect of water treatment on 
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community biomass was not statistically significant (P = 0.13), while the effect of 

C02 treatment was significant (P = 0.036). Mean values for pooled community above­

ground biomass at ambient and elevated CO2 treatments were 56.23 g ± 2.28 and 

63.76 g ± 2.78 respectively. Figure 4.12 shows that community responses to water 

treatments were more apparent at elevated C02 than ambient CO2. A one-way 

ANOV A was then performed to test the statistical significance of water treatment on 

biomass data of communities treated with elevated CO2 only (excluding biomass of 

communities exposed to ambient C02), and a significance level of P = 0.056 was 

observed. This suggests that above-ground biomass production of South African C4-

grasslands may not respond to CO2 under unfavourably low rainfall scenarios, or 

acclimate in years of rainfall scenarios higher than MAR. 
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Figure 4.12: A comparison of community above-ground response to water treatment 
at ambient and elevated CO2. 

Studies on grassland ecosystems in other parts of the world have also reported that 

effect of elevated CO2 on biomass production varies with levels of water availability, 

whereas data in this thesis indicates an optimum response at MAR. In the mesic 

tall grass prairie, biomass production under elevated CO2 was higher in relatively dry 

years (Owensby et al. 1993, 1999). In the water-limited shortgrass steppe, above­

ground biomass production was greatly enhanced by elevated CO2 in years of greater 
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than average precipitation (Morgan et al. 2001). The contrasting influence of water 

availability on responses of biomass production to elevated CO2 that is observed in 

the various grassland ecosystems highlights the importance of basing regional 

predictions of future climate change scenarios on experimental data derived under 

regional conditions. 

Cumulative community biomass production (above- and below-ground) was higher 

under elevated CO2 than ambient CO2 treatments (Figure 4.9). In order to assess 

cumulative effect of water treatment on cumulative biomass, results were pooled over 

time. Thus two categories of water treatment applied over three years are defined: 

(MAR, 120%MAR, MAR) and (80%MAR, MAR, 120%MAR). Mean values of the 

two categories are 107%MAR and MAR respectively. Effect of CO2 treatment on 

community cumulative production was significant at 95% level, but effect of water 

treatment was not. Among the elevated C02 treatments, an average water treatment of 

107%MAR resulted in a higher cumulative biomass production than an average water 

treatment of MAR (Figure 4.9). Trends in annual biomass production over the three 

years suggest that highest biomass production is attained at MAR, but the cumulative 

data suggest that highest biomass production is attained at a cumulative water supply 

higher than MAR (107%MAR). The difference between 107%MAR and MAR 

categories of water treatments is that the former represents both a narrower fluctuation 

of rainfall treatments and more water input. So the result suggests that both quantity 

and level of variability of water supply may be critical for response to elevated CO2. 

Even though this is a short-term experiment, the results suggest a potential for 

positive long-term effects of elevated C02 on production of South African C4-

grasslands. 

Analysis of biomass production by species serves as an indicator of competitive 

interactions, and consequently population dynamics of a community. The key species 

that contributed to above-ground production in all three years are Sporobolus and 

Themeda, which are both C4 grasses although of different photosynthetic sub-types 

namely PCK and NADP-me respectively. Low biomass contributions were recorded 

for the other two C4 grasses; Andropogon and Eragrostis of photosynthetic sub-types 

NADP-me and NAD-me respectively. Biomass production of the C3 grass 

Alloteropsis, was also low under elevated CO2. Greatest biomass response to elevated 
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CO2 occurred in warm season C4 grasses, possibly as a result of less extreme night 

time temperatures in the greenhouse. The results suggest that not all C4 grasses can 

respond positively to elevated CO2, and that responses may vary with location. Also, 

elevated CO2 may cause changes in community composition of warm-season vs. cool­

season grasses where the two types co-occur. Therefore, phenological attributes such 

as sprouting and senescence may play an important role in vegetation composition 

and competitive interactions of communities. 

Owensby and co-workers (1999) evaluated effect of elevated C02 on cool-season vs. 

warm-season grasses in a mixed community, and reported greater responses in warm­

season (C4 photosynthetic pathway) than in cool-season (C3 photosynthetic pathway). 

Comparison of species biomass responses in the field were also made by Morgan and 

co-workers (200 1), who reported biomass enhancement in one C3 species and not in 

the other co-dominant C3 and C4 species. 

Response of the crown biomass was highly influenced by C02 and water treatments, 

but not their interaction. Communities that were exposed to elevated CO2 and a higher 

water treatment allocated more biomass to the crown, implying a higher rate of 

reserve deposition in those communities and possibly a potential for enhanced 

recovery of C4-grasslands following disturbance. There was a definite species effect 

on crown biomass and the order of species contribution starting with the highest was: 

Eragrostis > Sporobolus > Themeda > Andropogon > Alloteropsis. Questions that 

arise from these data are (i) whether grass species that respond to elevated CO2 by 

development of new tillers would have larger crowns than species that respond 

through development of leaf area and (ii) does the size of the crown have an influence 

on the competitive ability of a species? All grasses used in this study reproduce by 

tillers. It is not clear whether grass species which respond to elevated C02 through 

leaf biomass would allocate more carbon to the crown than species which respond 

through development of stems. Perhaps an increase in stem mass could reflect an 

increase in tiller numbers. 

Below-ground production did not respond to CO2 and water treatments or their 

interaction. Assessment of treatment effect on below-ground growth may have been 

complicated by the fact that new root growth was not separated from part of the 
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biomass that was present at the beginning of the experiment, and the two components 

were measured together at the [mal harvest. Root restriction may have also 

contributed to non-responsiveness of below-ground production. Root density 

however, was higher in communities exposed to low water irrespective of CO2 

treatment. Almost 50% of root biomass was found in the top 12 cm of the soil in all 

treatments, thus enabling efficient water acquisition following a watering event. The 

shallow rooted nature of the grassland community could confer instantaneous benefit 

to growth-stimulating processes that occur predominantly in the upper layer of the soil 

such as nutrient mineralisation (Hungate et al. 1997; Arnone and Hohlen 1998), 

microbial activity (Rice et al. 1994) and earthworm activity (Zaller and Arnone, 

1997). On the other hand, shallow rootedness could easily dispose the grassland 

community to bush encroachment because woody shrubs would have prior access to 

soil water conserved under elevated CO2 by virtue of spatial separation of their root 

systems. 

The geophyte (Eriospermum mackenii (Hook.f.) Baker, subsp. mackenni) did not 

show a response to treatments in the above-ground organs in the first year. In the 

second and third years, above-ground biomass increased, but the increase in the 

second year was higher than the increase in the third year, possibly indicating an 

acclimation response. Similarly, the above-ground biomass production of the grasses 

was lower in the third year compared to the second year. There was a 6-11 % increase 

in the dry mass of tubers over the three years of the study, and the highest increase 

was recorded under elevated CO2 + MAR. 

Amount of surface litter accumulated at the end of the year comprised about 5-10% of 

community above-ground production. An average value was about 6 g per unit ground 

area of 0.159 m
2

. Contribution of the two dominant grass species (Sporobolus and 

Themeda) to surface litter was proportionally higher than the contribution of other 

species. Senesced plant material started falling from the canopy after full canopy 

development. There were no significant differences in treatment effect on amount of 

surface litter accumulation in each of the three years, and even when considered as a 

three year cumulative effect. Lack of treatment effect on surface litter could also 

imply that the physical attributes such as insulation of soil surface that limits 

evaporation of soil water, and promotion of water infiltration were not differentially 
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influenced by the presence of different amounts of litter. It is also speculated that the 

negative effects usually associated with presence of plant litter in communities (Xiong 

and Nilsson 1999) could not have influenced response of microcosm communities to 

treatments because a meta-analysis by Xiong and Nilsson (1999) suggested that litter 

quantities of less than 200 g m-2 are commonly associated with positive effects on 

plant communities. Soil organic matter content of the microcosms was also not 

significantly different among treatments after three years of the experiment, and it 

measured an average of just under 8% across treatments. Most of the soil organic 

matter input comes from root litter, even though some of the surface litter may 

eventually form soil organic matter after decomposition (though grass litter is known 

to have very low decomposition rates (Cornelissen and Thompson 1997)). Lack of 

treatment effect on soil organic matter content of the microcosms may be indicative of 

none-responsiveness of root growth to treatment or a physical restriction on root 

growth by pot size. 

The amount of soil organic matter at the end of the three year study was similar under 

all treatments, and had not changed from the beginning of the experiment. Soil 

organic matter correlates with ecosystem biogeochemical pools and processes, and 

litter is a major component of biogeochemical processes such as decomposition. 

Furthermore, rate of decomposition can be affected by soil water. Treatments in this 

study did not have any effects on the amount of litter accumulated, and that may have 

influenced lack of changes in soil organic matter. It is also difficult to speculate if lack 

of treatment effects on litter and soil organic matter content was influenced by 

phenology or a high dominance of C4 grasses as opposed to C3 grasses in the 

microcosms. Some workers (Epstein et al. 1999) have shown that composition of C3 

and C4 functional types in a grassland can have important influences on 

biogeochemical pools and processes. Their results showed that soil organic matter 

was relatively stable in C4 dominated communities with respect to changes in 

precipitation seasonality, whereas soil organic matter in the C3 community was 

sensitive to seasonality of precipitation changes. 
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CHAPTERS 

COMMUNITY WATER USE 

5.1. Introduction 

Water is a primary factor limiting growth and production in grasslands (Schulze et al. 

1987), and small changes in soil water balance are known to cause large changes in 

composition and function of grassland ecosystems (Epstein et al. 1999; Sala et al. 

1992). Overall composition of South African grasslands is in part determined by the 

seasonality of rainfall and associated occurrence of dry spells, and is to a large extent 

characterised by a regional distribution pattern whereby C4 grasses grade into regions 

that are suitable for C3 grasses (Vogel et al. 1978), as summer rainfall grades into 

winter rainfall. At a global scale however, an analysis by Ehleringer and co-workers 

(1997) suggests that the correlation between total precipitation and distribution of C4 

grasslands is less critical relative to the stronger correlation between distribution of C4 

grasslands and minimum growing-season temperature. 

Competitive interactions among C3 and C4 grass species under elevated C02 are likely 

to influence compositional balance of South African grassland communities where 

both C3 and C4 types co-occur. Furthermore, yield of grassland catchments could also 

be influenced by elevated C02 through effects on plant water use and soil water 

balance. At the time when the current study was undertaken, there were no 

experimental investigations on the effect of increasing atmospheric C02 on water use 

of South African natural grassland communities. However, there are several reports in 

the literature on effects of elevated CO2 on water use of natural grasslands from other 

parts of the world, and a clear message that comes out of some of the reports 

(Owensby et al. 1997) is that there is an observed sustenance of plants in drier 

environments due to enhanced availability of soil water under increasing levels of 

atmospheric CO2. 

Paleoclimate studies and recent evidence (Williams and Balling 1996) support the fact 

that areas that are now drylands of the central and western United States, southern 

South America and Western Australia, were much more vegetated in past epochs with 

high atmospheric CO2 concentrations. For southern Africa, on the contrary, Williams 
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and Balling (1996) reported a trend of increasing aridity concurrent with increasing 

levels of atmospheric C02. Recent predictions for South Africa based on a climate 

change scenario assuming increase in atmospheric CO2 to 550 ppm, modelled by 

Midgley, Rutherford and Bond, and reported by Ashwell (2001) suggest that the 

Succulent Karoo Biome will become more arid, particularly in the west. Cognisance 

of different climate change predictions for southern Africa relative to other parts of 

the world strongly warrants more climate change research in the southern African 

region. It is apparent that climate change mitigation for southern African cannot be 

based on extrapolation of predictions that are specific for other parts of the world. 

Within southern Africa, there may be predicted climate change scenarios of enhanced 

soil water availability for some ecosystems, co-occurring with increasing aridity for 

other ecosystems. Increases or reductions in aridity of terrestrial ecosystems under 

elevated C02 has a potential to alter geographical range of species. More arid regions 

will offer fewer restricted refuge sites for plants, while less aridity prone regions will 

offer broader refuge sites. The scenarios highlight the dire need for in-depth 

understanding of the unique southern African regional impacts of climate change on 

biodiversity and other ecosystem-based resources. 

The first study to report an increase in ecosystem water use efficiency under elevated 

CO2 was conducted on a mixed C3/ C4 mesic tallgrass prairie in Kansas (Knapp et al. 

1993a), a result that has been confirmed through several years in that community 

(Ham et al. 1995, Bremer et al. 1996, Owensby et al. 1999). The authors attributed the 

observed responses to reduced gs. Other studies in which a similar trend of increased 

water use efficiency was reported include a C3 semi-arid annual grassland in 

California (Freeden et al. 1996), and C3 mesic perennial grasslands in Switzerland 

(Niklaus et al. 1998) and Sweden (Sindlwj et al. 2000). Positive effects of elevated 

C02 on water use have also been reported in reconstituted grassland communities 

(Griinzweig and Komer, 2001, Yolk et al. 2000). 

In the study by Griinzweig and Komer (2001), more than two CO2 concentration 

treatments were applied, viz., 280, 440, and 660 /lmol mo(l; and community water 

use efficiency was increased more at a higher CO2 concentration of 660 /lmol mo(1 

than at an intermediate CO2 concentration of 440 /lmol mo(l, due to a greater 
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reduction in evapotranspiration at the higher C02; i.e. evapotranspiration was 2% and 
-I -I 

11 % lower at 440 and 600 J.lmol mol respectively relative to 280 J.lmol mol . The 

response of increased water use efficiency in communities and microcosms exposed 

to elevated CO2 is unequivocally attributed to reduced stomatal conductance as a 

consequence of increased ci (Jackson et al. 1994; Ham et al. 1995; Wand et al. 1999), 

which results in improved water status at the leaf and whole plant level (Tyree and 

Alexander, 1993). 

Ecophysiological benefits of improved water use efficiency under elevated C02 

include (i) extended periods of photosynthetic activity in ecosystems that are 

otherwise water-limited, and (ii) increased carbon allocation to root biomass to 

enhance the capacity for extraction of soil water and better exploitation of water 

limited environments (Owensby et al. 1997). Additionally, improved water use 

efficiency could potentially result in decreased allocation to root development in 

ecosystems where water is not a limiting factor for growth. However, Wullschleger et 

al. (2002) argue that the capacity of the root system for the uptake of water does not 

depend only on root biomass, but on rooting volume, rooting depth, root density, and 

fme root surface area activity. These authors (Wullschleger et al. 2002) further argue 

that effects of elevated C02 on rooting volume become less significant when soil 

water is adequate to meet transpirational losses. However, Hungate and co-workers 

(1997) presented a more comprehensive proposal that if elevated C02 could reduce 

canopy transpiration and root uptake of water regardless of any effect on root volume, 

that would also result in increased soil water. 

The current chapter investigates changes in evapotranspiration (ET) and soil water 

status of microcosm communities under ambient and elevated CO2 coupled with 

different water treatments. The key question is whether community-level water use 

will be changed by long-term exposure to elevated CO2. The working hypotheses for 

the study are that: 1) elevated CO2 will reduce ET and improve soil water status, 2) 

effects of elevated CO2 will depend on the amount and frequency of application of 

water treatments, and 3) responses of ET will be related to canopy developmental 

stages and phenology. Potential consequences of a change in community 

evapotranspiration under elevated CO2 include (i) changes in soil water status at the 
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end of a growing season, (ii) changes in growing season length, or (iii) changes in leaf 

area index, and the study will also investigate which of the three potential 

consequences will occur. 

The hypotheses were tested by measurement of evapotranspiration using lysimetry, 

and volumetric soil water content was measured with a soil moisture probe in order to 

determine soil water status. The experimental set-up was designed to eliminate runoff 

so that output was measured as evapotranspiration plus drainage loss during the first 

year, and as evapotranspiration only for second and third years. Water output by 

drainage was measured only in the first year, and was subsequently ignored in the 

second and third years without any major consequences for computation of water use 

in the microcosms. 

5.2 Materials and Methods 

5.2.1 Community evapotranspiration by lysimetry 

Ideally, the most direct method of measuring evapotranspiration is eddy covariance 

methodology. However the technology is not appropriate at small scales, and 

therefore other direct methods may be considered. A weighing lysimeter qualifies as a 

direct method for measurement of evapotranspiration under conditions where rain or 

irrigation is controlled, provided deep drainage is accounted for. Weighing lysimetry 

was used in the current study as a direct method of measuring community 

evapotranspiration because it fulfilled requirements of permitting control of water 

input together with precision and replication, while being easily available and cost 

effective. The weighing lysimeter consisted of a rail-guided and hand-operated mobile 

crane to which a cantilevered balance consisting of a load cell and a millivolt meter, 

were attached (Chapter 2 section 2.2). 

The capacity of the load cell on the lysimeter was 60 kg with an error margin of 109. 

Evapotranspiration in the study comprised of transpirational water loss, foliar 

interception, and evaporation from the soil surface. Foliar interception was however 

kept to a complete minimum by applying watering treatments very close to the soil 

surface. A potential source of error in the measurement of evapotranspiration that 

could occur due to incremental changes in plant biomass was expected to be 

insignificant, because common estimates of such errors are said to be in the vicinity of 
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less than 1 % of change in water storage (Dunin et al. 1983). Biomass data obtained in 

the current study was not used to estimate the magnitude of error arising from 

incremental changes in plant mass because water content of the foliage had not been 

determined during the course of the growing season. 

Measurements were performed by weighing individual microcosms (plant pot) at 

weekly intervals, before application of watering treatment. The "after watering" mass 

of microcosms was determined by adding to the "before watering" value of pot mass, 

the mass of water supplied. However, at the beginning of the fIrst year, measurements 

were performed more frequently, and some occasions twice or three times a week. 

Precision of frequent measurements in the fIrst year was usually satisfactory, except 

on occasions when recorded values of water loss were very low as a consequence of a 

stochastic pattern of watering. Thus to minimise concerns about measurement 

precision, a stochastic pattern of treatment application was replaced by a regular 

pattern of twice weekly watering in the second and third years. From then on, 

measurements were done weekly until end of the study. The best time of day for 

weighing was either in the morning or late in the afternoon, during periods of low 

evaporative demand. 

Evapotranspiration was calculated as the difference in pot mass between two 

consecutive weighing events, taking into account the mass of water applied between 

the two weighing events. Evapotranspiration was assessed from the beginning to the 

end of a growing season in the three years of the experiment, and the beginning of a 

growing season was taken as the time of increase in watering, which according to the 

rainfall data (Figure 2.4.2) was beginning of September each year. 

The lysimetry data can provide an indication of treatment effect on weekly, monthly 

and annual cumulative evapotranspiration loss. On the other hand, when values of 

water loss are considered against total amount of water supplied, the data could also 

allow for estimation of the amount of water accumulated in the soil. A slight 

limitation of determining soil water status as a difference between water added and 

water evapotranspired would be lack of an indication of spatial distribution of 

accumulated soil water in the soil profIle. Further measurements were therefore 
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undertaken using a Delta-T Theta Probe soil sensor (section 5.2.3) to assess patterns 

of water distribution within the soil profile in the second and third years. 

5.2.2 Drainage loss in the first year 

Microcosms were fitted with 50 cm drainage tubing at the bottom of plant pots. The 

hanging ends of drainage tubes were plugged to ensure control over collection and 

quantifying of drainage loss. Volume of drainage liquid was collected and quantified 

whenever drainage tubes were full, and if present, subsequently collections were 

added up to make monthly totals, which were in turn added up to calculate a 

cumulative annual value. An ANOV A was performed to assess the statistical 

significance of treatment effect on the cumulative annual value. 

5.2.3 Volumetric soil water content 

Volumetric soil water content was measured in situ at soil depths of 6 cm, 12 cm and 

20 cm on each plant pot using an ML2x Delta-T Theta Probe (Delta-T Devices Ltd., 

Cambridge, UK). The instrument consisted of a sensor head adjacent to a PVC case 

enclosing power transmission and measuring circuitry. A PVC case of 112 mm was 

connected to a hand-held voltage output device by an input/output cable of 5 m. The 

sensor head was made of four sharp-ended 60 mm stainless steel rods. A template of 

the sensor rods was made on a PVC sheet and used to drill permanent access holes at 

demarcated positions on plant pots to enable entry of rods when taking measurements. 

Short wooden plugs of similar thickness to rods were used as plugs in access holes in 

order to prevent soil from drying when measurement was not in progress. 

Principle of operation of the Theta Probe is based on a relationship between the 

dielectric constant of soil (c) and voltage output signal (V) explained by a third order 

polynomial (Theta Probe User Manual 1997): 

Equation 1: --JE = 1.07 + 6.4Y - 6.4y2 + 4.7y3 (R2 = 0.998) 

Volumetric soil water content, e, was determined by a linear relationship with 

dielectric constant (Whalley, 1993; White et al. 1994): 

Equation 2: --JE = aO + al • e 
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The instrument was operated within a range of 0 to 1 V, which corresponded to a 

volumetric soil water content of 0 to 0.55 m3m·3 (Theta Probe User Manual, 1997). 

Soil specific calibrations were performed for each of two soil types used in the 

experiment viz., silty loam for potting and silty clay lining the bottom 5 cm of plant 

pots; in order to determine coefficients a
1 

and ao in equation 2. Measurements for 

instrument calibration were taken on soil at various levels of wetness, from saturation 

(drainage upper limit) through to oven-dryness. Three replicate calibrations were done 

for each soil type on one-litre samples of known mass. 

Assessment of treatment effects on volumetric soil water content was done during the 

second and third years at intervals of once a week. Two sets of readings were taken on 

each sampling event, one set just before watering and the other an hour after watering. 

The trend in "before-" and "after watering" readings could give an indication of 

change in volumetric soil water content, even though the differences would not 

necessarily have a linear relationship. Taking measurements an hour after a watering 

event allowed sufficient time for even distribution of water in the soil. Measurements 

at 6 cm depth were taken at five random positions in each pot by vertically inserting 

sensor rods at the soil surface. Measurements at 12 and 20 cm depths were each taken 

at two demarcated horizontally opposite replicate positions on either side of a plant 

pot. Sampling was done either in the morning or late in the afternoon, when 

evaporative demand was low. 

5.3 Results 

5.3.1 Evapotranspiration in the first year 

5.3.1.1 Annual cumulative evapotranspiration and water use efficiency (WUE) 

Cumulative evapotranspiration at end of the first year indicated higher water loss 

under ambient CO2 relative to elevated CO2 (Figure 5.1). The results also suggest a 

strong effect of water treatment within ambient and elevated CO2 treatments. 

Evapotranspiration was reduced by 12% under elevated CO2 + MAR relative to 

ambient CO2 + MAR treatment (Figure 5.1). The observed responses were 

demonstrated by statistically significant treatment main effects of both CO2 and water 

(P < 0.001 for both) and their interaction (P = 0.0203). However, a more meaningful 
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comparison of treatment effect on community water use strategies under different 

treatments would be based on the relationship between total evapotranspirational 

water loss and the amount of biomass produced, WUE (Table 5.1). Community WUE 

at the end of the fIrst year was calculated as total above-ground biomass (g) produced 

(Chapter 4, Figure 4.4.1.a) per kg of water lost by evapotranspiration. A short-coming 

of the analysis was that the WUE ratio obtained did not include below-ground 

production because root biomass was harvested only at the end of the third year. 

Nonetheless, effect of C02 treatment on WUE was statistically signifIcant (P = 

0.0016), but effect of water treatment was not (P = 0.45) and treatment interactions 

were statistically signifIcant (P = 0.0095) indicating that responses to CO2 treatment 

were dependent on water supply. 

Table 5.1: WUE as a ratio of the above-ground biomass produced to the total 
evapotranspiration in the fIrst year. 

Treatment WUE (elk2) 

Elevated CO2 + MAR 1.24 ± 0.04 

Elevated C02 + 80%MAR 1.11 ± 0.08 

~bient CO2 + MAR 0.84 ± 0.05 

IAmbient C02 + 80%MAR 1.058 ± 0.05 

5.3.1.2 Annual cumulative evapotranspiration and soil water status 

A comparison of cumulative water loss by evapotranspiration against total amount of 

water added during the fIrst year (from beginning of September 1998 to the end of 

May 1999) gives an indication of the amount of water remaining in the soil, taking 

into consideration amount of water lost as drainage (section 5.3.2). That comparison 

indicates that 79% of added water was lost as evapotranspiration under the elevated 

CO2 + MAR even though leaf biomass production increased, and that 91 % was lost 

under ambient CO2 + MAR. Under the treatments of lower water supply namely, 

elevated CO2 + 80%MAR and ambient CO2 + 80%MAR, cumulative 

evapotranspiration accounted for 81 % and 88% of applied watering treatment 
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respectively. It follows that soil water accumulation would therefore be highest under 

elevated CO2 + MAR (44%), followed by elevated C02 + 80%MAR (42%), then 

ambient CO2 + 80%MAR (39%), and least under ambient CO2 + MAR (34%). 

Assessment of treatment effect on soil water accumulation was examined by 

considering change in pot mass throughout the year. Increase in values of pot mass 

recorded before watering serve as better indicators of soil water status than values of 

pot mass recorded after watering, because the latter would be influenced by addition 

of water. Taking into consideration the fact that pot mass was different for all 

microcosms at the beginning of the experiment, the best way to compare the trend of 

changes in pot mass would be a comparison of the slope of the graphs representing 

the data. Figure 5.2 illustrates a consistent increase in values of pot mass recorded 

before watering during the period between day 53 and day 151 since application in 

watering treatment. Values of pot mass recorded between days 0-39 since application 

of watering, which represents a period from beginning of September to beginning of 

October, show a decline of about 1.6-2 kg despite a 59% increase in amount of 

watering for the same period. During the period before application of CO2 and 

watering treatments, plant pots were watered to field capacity to ensure efficient 

establishment. The origin of the water lost during days 0-39 since application of 

watering which resulted in the observed initial decline in pot mass at that period, is 

speculated to have come from the saturated condition that was maintained during 

establishment. 

Comparison of slopes for increase in pot mass (Figure 5.3) was performed in order to 

assess treatment effect on soil water accumulation, by calculating the regression 

coefficients and their respective 95% confidence intervals (upper and lower limits) 

using the "studentized range" method (Sokal and Rohlf, 1995). The 95% intervals of 

the regression coefficients are represented in Figure 5.3. A similar analysis was 

performed for second and third year data on change in pot mass. The analysis 

illustrated in Figure 5.3 was performed on data points representing the period from 

days 44-151 on Figure 5.2, during which a similar response pattern was observed in 

all four treatments. The regression coefficients whose intervals do not overlap show 

statistically significant differences in treatment effect. The analysis suggests that the 
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greatest increase in pot mass occurred under elevated C02 + MAR., but that increase 

in pot mass was not significantly different from ambient C02 + MAR. 

Data points falling beyond day 151 were excluded from the analysis of regression 

coefficients because opposite response patterns in soil water status were observed in 

ambient and elevated CO2 treatments (Figure 5.2). Pot mass declined progressively in 

the ambient CO2 microcosms, and by end of year values were similar to values 

recorded at the beginning of year. Among the ambient CO2-treated microcosms, pots 

receiving 80%MAR underwent a quicker rate of reduction in mass due to water loss 

than pots receiving MAR, nonetheless remaining at a similar value by end of year. Pot 

mass of microcosms exposed to elevated C02 on the other hand remained high after 

day 151, declining only slightly by end of year. Among the elevated C02 microcosms, 

pots receiving 80%MAR continued to accumulate soil water, reaching a similar level 

of mass as pots receiving MAR by end of year. Differences in response under ambient 

and elevated C02 could be attributed to two different phenomena. Pot mass of 

microcosms exposed to ambient C02 increased with increasing water supply, and 

declined when a reduction in water supply occurred after day 151. While increase in 

water supply may have also contributed to the observed increment in pot mass under 

elevated CO2, maintenance of high pot mass through the period of reduced water 

supply after day 151 under elevated CO2 strongly suggests a CO2 treatment effect. 

The data on cumulative evapotranspiration and soil water accumulation (increase in 

pot mass with time) were used to determine coarse estimates of soil water balance in 

the microcosms under different treatments. That procedure was performed for the 

period representing beginning to end of year (days 44-273 Figure 5.2). In that way, 

the analysis would differentiate actual treatment effects on soil water balance from 

consequences of increase in water supply, because any increase in soil water 

accumulation that occurred due to increase in water supply during the course of year 

would have ceased by end of year. Results of the analysis show an accumulation of 

2% soil water under elevated CO2 + MAR, 6% soil water accumulation in elevated 

CO2 + 80%MAR, no soil water accumulated in ambient CO2 + MAR, and 1.9% soil 

water accumulation in ambient CO2 + 80%MAR. 
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5.3.1.3 Monthly cumulative evapotranspiration 

The pattern of monthly evapotranspiration (Figure 5.4) could be described as 

dependent on water supply and somewhat related to canopy development. At the 

beginning of growing season during September, evapotranspiration accounted for 50-

60% of the water applied. A large component of evapotranspiration was surface 

evaporation because there was little foliage present. The rate of water loss was similar 

among all four treatments, particularly during September. Statistical significance of 

treatment effects on monthly evapotranspiration was assessed separately for each 

month as shown in Table 5.2. Treatment main effects and their interaction did not 

have statistically significant effects on water loss during September. In October, the 

effect of water treatment was statistically significant, while C02 effect was marginally 

significant, and C02 interaction with water treatment was not significant. Microcosms 

receiving MAR lost more water than microcosms receiving 80%MAR under both 

C02 treatments from October until at the end of the growing season (Figure 5.4). 

Among microcosms receiving similar water treatments, the group of microcosms 

under elevated C02 lost less water than those under ambient CO2 between October 

and March. Thereafter, a transition occurred whereby water loss decreased under 

ambient C02 at both MAR and 80%MAR, notably at the time when senescence 

started. The canopy developmental phase of senescence was noted to occur earlier 

under ambient CO2 treatments, thus indicating longer growing season for microcosms 

exposed to elevated CO2. The apparent higher rate of water loss observed in elevated 

CO2 microcosms during April and May was a consequence of delayed senescence 

resulting in prolonged physiological activity. Initial rate of water loss during the first 

half of the growing season (September to January), and the difference in water loss 

among and between groups was more moderate. Subsequently, a high increase in 

water loss was noted under MAR treatments during February and March, a time 

corresponding with full canopy. A more steady rate of water loss was observed under 

elevated CO2 + 80%MAR throughout the year. Treatment main effects on the 

observed responses were significant during most months except in September and 

December. 

Data on weekly rate of water loss was characterised by a high degree of variability 

because of the direct effects of weather fluctuations, hence data are not shown. 

Nonetheless, typical values for weekly rate of water loss ranged between just over 0.5 
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kg at beginning of growing season in September, to just over 1.5 kg by end of 

growing season in May. The maximum rate of weekly water loss occurred in the 

middle of the growing season and typical values ranged between 1.7 to 3.0 kg. 

Table 5.2: Statistical significance of treatment effects on monthly total 
evapotranspiration in the first year. NS notes lack of statistical significance of 
treatment effect in parenthesis. 

Month Statistical sienificance of treatment effect 

CO2 Water Interaction 

September P = 0.863 (NS) P = 0.0566 (NS) P = 0.744 (NS) 

October P = 0.0562 (NS) P = 0.026 P = 0.914 (NS) 

November P = 0.0490 P < 0.001 P = 0.5905 (NS) 

December P = 0.914 (NS) P = 0.1 (NS) P = 0.892 (NS) 

January P < 0.001 P < 0.001 P = 0.2499 (NS) 

February P < 0.001 P < 0.001 P = 0.1392 (NS) 

March P < 0.001 P < 0.001 P = 0.0019 

April P = 0.0791 (NS) P < 0.001 P < 0.001 

May P = 0.001 P = 0.1391 (NS) P = 0.0083 
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Figure 5.1: Treatment effect on cumulative evapotranspiration in the first year. 
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Figure 5.2: Treatment effect on change in pot mass reflecting soil water status in the 
first year. 
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Figure 5.4: Treatment effect on monthly cumulative evapotranspiration in the first 
year. 

5.3.1.4 Drainage loss in the first year 

Drainage loss occurred when watering in excess of the equivalent of 25 mm of rainfall 

was applied within a period of two days. Drainage volume collected from microcosms 

receiving a water treatment of MAR under both ambient and elevated CO2 was higher 

than drainage volume collected from microcosms receiving 80%MAR under both 

ambient and elevated C02. The first incident of drainage was recorded towards the 

end of November 1998, and it was concurrent with the largest watering event since 

beginning of the growing season. Subsequent collections of drainage were made 

during December 1998, January 1999 and February 1999. During December 1998 and 

February 1999, drainage was also collected from microcosms receiving 80%MAR. 

Cumulative drainage output was estimated at 3mm relative to annual rainfall of 734 

mm. Treatment effects on drainage output were not statistically significant with the 

following P values: P = 0.28 for CO2 treatment, P = 0.93 for water treatment, and P = 

0.47 interactions. No drainage was collected during years two and three because when 

the stochastic watering programme was changed to regular watering, thus eliminating 

application of large quantities of water which would result in drainage. 

5.3.2 Evapotranspiration in the second year 

5.3.2.1 Annual cumulative evapotranspiration and water use efficiency (WUE) 

Treatment effect on cumulative evapotranspiration at the end of year two is illustrated 

in Figure 5.5. Statistical analysis of the data showed a highly significant effect (P < 

0.0001) of the main treatments and their interaction. Lower cumulative 

evapotranspiration was observed in microcosms exposed to elevated C02 compared to 

microcosms exposed to ambient CO2 at similar water treatments. Expressing 

cumulative evapotranspiration data as a proportion of total amount of water added in 

the second year (from beginning of September 1999 to May 2000) illustrated that the 

difference in response among CO2 treatments was greater at 120%MAR than at MAR. 

For instance, microcosms exposed to elevated C02 + 120%MAR lost 12% less water 

than microcosms exposed to ambient C02 + 120%MAR, while microcosms exposed 

to elevated CO2 + MAR lost 3% less water compared to microcosms exposed to 
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ambient C02 + MAR. Within elevated CO2 treatments, cumulative evapotranspiration 

was 7% lower at 120%MAR compared to MAR, but within the ambient CO2 

treatments cumulative evapotranspiration was 2% higher at 120%MAR compared to 

MAR. 

An annual companson for first and second years showed a slight reduction in 

evapotranspiration relative to water supply during the second year despite two 

modifications in watering treatment that increased the quantity and frequency of water 

supply, viz., 20% increment in water treatment and regular application (Chapter 2 

Table 2.2). It would be expected that a 20% increment in water supply would render 

the soil surface wetter on a regular basis compared to the first year, possibly 

increasing chances of surface evaporation prior to canopy closure. Indeed, the 

absolute values of water evapotranspired in the second year had increased compared 

to the absolute values of the first year (Figures 5.1 and 5.5), but the response pattern 

changed when evapotranspiration values were expressed as a proportion of total water 

supply. An exception to this pattern was noted under elevated C02 + MAR in terms of 

both absolute amount of water evapotranspired, but proportionally 56% of added 

water was lost under that treatment in the first and second years. The difference 

however, is that more above-ground biomass was produced in the second year than in 

the first year under elevated CO2 + MAR, resulting in a WUE of 1.31 g above-ground 

biomass kg-1 water lost (Table 5.3) compared to 1.24 g kg-1 (Table 5.1) observed in 

second and first years respectively. Comparison of WUE in the other three treatments 

during the first and second years respectively showed either no change or slight 

reduction in WUE (Tables 5.1 and 5.3). Treatment main effects of CO2 and water 

treatments on WUE were statistically significant (P = 0.026 and 0.03 respectively), 

and treatment interactions were not statistically significant (P = 0.82) in the second 

year. 
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Table 5.3: WUE as a ratio of the above-ground biomass produced to the total 
evapotranspiration in the second year. 

Treatment WUE (g/kg) 

IElevated C02 + 120%MAR 1.04 ± 0.08 

Elevated C02 + MAR 1.31 ± 0.12 

~bient C02 + 120%MAR 0.8 ± 0.06 

~bient C02 + MAR 1.04 ± 0.15 

5.3.2.2 Annual cumulative evapotranspiration and soil water status 

Assessment of treatment effect on soil water accumulation was done by comparing 

change in pot mass for measurements taken "before watering" throughout the second 

year (Figure 5.6). Pot mass generally increased in all treatments indicating 

accumulation of soil water from beginning of growing season until day 213. The 

highest increment in pot mass occurred under elevated C02 + 120%MAR, and the 

lowest increment occurred under ambient CO2 + MAR (Figure 5.6). Over the last part 

of the growing season little change was observed in pot mass of microcosms exposed 

to elevated CO2, whereas a decline in pot mass was observed in the ambient CO2 

treatments and also elevated CO2 + MAR. Soil water retained in elevated CO2-treated 

microcosms towards end of growing season sustained further physiological activity 

and a delay in senescence. 

Evaluation of treatment effect on increase in pot mass as an indicator of soil water 

accumulation was done by regression analysis of the slopes of graphs in Figure 5.6, 

for a period from 62-189 days. The 95% confidence intervals of the regression 

coefficients are shown in Figure 5.7. Regression coefficients whose intervals do not 

overlap are indicative of statistically significant differences due to treatment effect. 

There was some overlap in coefficient intervals within either ambient CO2 treatments 

and elevated CO2 treatments, suggesting a lack of statistically significant effect of 

water treatment within each CO2 treatment group. The overlap was bigger for ambient 

CO2 treatments than for elevated CO2 treatments. 
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Estimates of soil water balance were done for the period between days 62-273 by 

subtracting cumulative water loss for that period from the amount of water added over 

the same period. Results of that analysis show an accumulation of 8.75% soil water 

under elevated C02 + 120%MAR, 4% soil water accumulation in elevated C02 + 

MAR, no soil water accumulated in ambient CO2 + 120%MAR, and 2.3% soil water 

accumulation in ambient C02 + MAR. 

5.3.2.3 Monthly cumulative evapotranspiration 

Total monthly evapotranspiration increased continuously from September to 

February, and then declined during March until May (Figure 5.8). A peak In 

evapotranspiration occurred during February at the time of full canopy, which was a 

two month lag behind a peak in total monthly rainfall. Increases in evapotranspiration 

during September to October, and during January to February were steeper than the 

increases that occurred during November to January. It seemed that substantially 

higher rates of evapotranspiration coincided with periods of initial growth (September 

to October) and full canopy (January and February). Total monthly evapotranspiration 

during each of the nine months of measurement were separately subjected to a two­

way ANOVA (Table 5.4). Results of the ANOVA show that effects of CO2 and water 

treatments were significant during most part of the growing season, except in October 

when only effects of water treatments were significant, but effects of CO2 and its 

interaction with water treatment were not significant. Effect of C02 treatment was 

again non-significant during February. 

Weeldy rates of evapotranspiration in the second year were less variable (data not 

shown) than weekly rates of evapotranspiration in the first year, probably because of a 

change from stochastic to regular watering. The pattern of weekly water loss was 

generally similar to a pattern of water supply, but also with a strong influence of short 

fluctuations in weather conditions. Initial weekly water loss ranged around just over 

0.5 kg and it increased to about 2.2 kg by end of growing season. 
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Table 5.4: Statistical significance of treatment effects on total monthly 
evapotranspiration in the second year. 

Month Statistical significance of treatment effect 

CO2 Water Interaction 

September P = 0.0047 P = 0.0004 P = 0.0006 

October P = 0.765 (NS) P = 0.0073 P = 0.913 (NS) 

November P = 0.0026 P = 0.0033 P = 0.956 (NS) 

December P < 0.001 P < 0.001 P = 0.0758 (NS) 

January P < 0.0001 P < 0.001 P = 0.0042 

February P = 0.129 (NS) P < 0.0001 P < 0.0001 

March P = 0.0003 P < 0.0035 P = 0.483 (NS) 

April P < 0.0001 P < 0.0001 P < 0.0001 

May P < 0.0001 P < 0.0001 P < 0.0001 

5.3.2.4 Volumetric soil water content 

Assessment of treatment effect on soil water content was done by measurements 

recorded just before a watering event, instead of on measurements recorded after a 

watering event. Figures 5.9: (a-c) show that soil water content generally increased 

with soil depth in all treatments. The highest soil water content was measured at the 

bottom clay layer, and the second highest measured in the rooting layer, while the 

lowest soil water content was measured at the soil surface. Dynamics of soil water 

content at the soil surface are under the control of both direct evaporation from the 

soil and utilisation by plant below-ground organs. However, logic dictates that 

evaporative demand on the soil would be highest in the first few millimetres of soil 

layer after a watering event, and thereafter movement of water vapour molecules 

across the soil surface would be constrained by tortuousity of the diffusion pathway. 

Differences in soil water content observed at the soil surface would hence be to a 

large extent a consequence of treatment effects on plant water utilisation, as would be 

the case in the deeper layers of the soil profile. 
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The highest soil water content at the soil surface was measured in microcosms 

exposed to elevated CO2 + 120%MAR, and the lowest surface soil water content was 

measured in microcosms exposed to ambient CO2 + MAR (Figure 5.9a). There were 

however, a lot of similarities in water content values recorded in microcosms treated 

with elevated CO2 + MAR and ambient CO2 + 120%MAR. Compared to Figures 5.9 

band c Figure 5.9a shows less variability among treatments throughout the year. 

A different pattern of treatment effect on soil water content was observed in the 

rooting layer Figures 5.9b, in that microcosms treated with elevated C02 clearly 

retained more water in the soil at both 120%MAR and MAR than microcosms treated 

with ambient C02 at both watering treatments. At either C02 treatment however, 

higher volumetric soil water was consistently recorded under 120%MAR than MAR, 

but the difference in soil water content due to water treatment was biggest under 

elevated C02 than under ambient CO2. Dynamics of soil water content in the clay 

layer (Figure 5.9c) were more influenced by water treatment than C02 treatment, but 

within each water treatment, higher volumetric soil water content was measured under 

elevated C02. 
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Figure 5.5: Treatment effect on cumulative evapotranspiration in the second year. 
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Figure 5.6: Treatment effect on change in pot mass as a consequence of soil water status 
in the second year. 
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Figure 5.9 (a-c): Treatment effect on volumetric soil water content in the second year 
measured at different depths before a watering event. 
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5.3.3. Evapotranspiration in the third year 

5.3.3.1 Annual cumulative evapotranspiration and water use efficiency (WUE) 

The pattern of water loss that was observed in the third year was consistently similar to 

the pattern observed in the first and second years, which was characterised by higher 

cumulative evapotranspiration under ambient CO2 compared to elevated CO2 at similar 

water treatments (Figure 5.10). Elements of contrast however, were that in the third year 

the highest annual cumulative water loss was lower than that recorded in either the first 

or second years. Furthermore, differences in water loss between treatments were smaller 

in the third year, but nonetheless of high statistical significance with regards to main 

effect of CO2 and water (P < 0.001), even though their interaction was not statistically 

significant (P = 0.18). Microcosms supplied with 120%MAR lost more water (in absolute 

units) than those supplied with MAR. However, when annual cumulative 

evapotranspiration was expressed relative to the total amount of water supplied, 

microcosms supplied with MAR lost a higher proportion of the water available to them 

than those receiving 120%MAR. In a further analysis annual cumulative 

evapotranspiration was expressed relative to total biomass produced, in order to 

determine WUE. MAR treatments yielded higher WUE than 120%MAR in both ambient 

and elevated CO2 treatments (Table 5.5). Highest WUE among the four treatments 

occurred under elevated C02 + MAR. 

Table 5.5: WUE as a ratio of the above-ground biomass produced to the total 
evapotranspiration. 

Treatment WUE 

Elevated CO2 + MAR 0.94 + 0.02 

Elevated CO2 + 120%MAR 0.71 + 0.05 

Ambient C02 + MAR 0.73 + 0.04 

Ambient CO2 + 120%MAR 0.68 + 0.05 
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5.3.4.2 Annual cumulative evapotranspiration and soil water status 

The extent of soil water accumulation was determined from changes in pot mass prior to 

each watering event throughout the year (Figure 5.11). The data show higher pot mass for 

microcosms receiving 120%MAR than microcosms receiving MAR regardless of CO2 

treatment in the earlier part of the year. The trend in the data could be attributed to both 

(i) annual increase in water supply and (ii) the physiological consequences of increase in 

water supply. An increase in pot mass that occurred due to a physiological consequence 

of treatment effect would be expected to be prolonged subsequent to a reduction in water 

supply, while an increase in pot mass that occurred due only to increased water supply 

would cease subsequent to a reduction in water supply. Plant pots generally showed 

increase in mass from day 33 since the increase in watering treatment, and remained at 

high mass throughout the period of high water supply. Reduction in pot mass that 

occurred subsequent to a reduction in water supply was first observed at day 166 in the 

ambient C02 + MAR treatment, followed by the treatment receiving ambient CO2 + 

120%MAR at day 194. Elevated CO2-treated microcosms on the other hand retained high 

pot mass due to accumulation of soil water until after day 250, implying that accumulated 

soil water was available for a longer period to sustain physiological activity and delay 

senescence. 

Pot mass data were subjected to a regression analysis for comparison of upper and lower 

limits of regression coefficients of the slopes of the graphs shown in Figure 5.11. The 

regression analysis was done for data points representing days 40-187 from the increase 

in watering treatment, and the results are shown in Figure 5.12. Statistically significant 

differences in the effect of treatments on pot mass were denoted by non-overlap of the 

regression coefficients. The effects of CO2 treatment on soil water accumulation were 

significantly different at MAR but were not significantly different at 120%MAR. The 

results indicate that elevated CO2 can reduce cumulative evapotranspiration of grassland 

microcosm communities at MAR, but the effect does not become obvious at the excess 

water supply of 120%MAR. 
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5.3.4.3 Monthly cumulative evapotranspiration 

Total monthly evapotranspiration is illustrated in Figure 5.13. Overall response pattern in 

the first four months of the growing season depicted a higher rate of water loss under 

elevated C02 treatments relative to ambient C02 at similar water treatments. Thereafter, 

water loss under ambient C02 treatments increased to values higher than observed in 

elevated CO2. A high initial rate of water loss under elevated C02 could have been due to 

a head start in canopy development, while a lag in canopy development was observed in 

microcosms exposed to ambient C02 at beginning of growing season. By the middle of 

the growing season, canopy development under ambient CO2 was profuse, hence the 

observed high rates of evapotranspiration in ambient CO2 between January and March. 

Generally, a steadier rate of evapotranspiration occurred in elevated CO2 throughout the 

growing season, and even the start of a reduction in water loss after February was 

moderate, as opposed to abrupt changes in response patterns in ambient C02-treated 

microcosms. For instance in ambient CO2, there were three clearly distinct phases of 

evapotranspiration that could be related to stages of canopy development. The third phase 

of evapotranspiration in ambient CO2 was a reduction in water loss, which occurred after 

March and was physiologically associated with beginning of senescence. Beginning of 

senescence in ambient CO2-treated microcosms was also associated with a reduction in 

water supply. Senescence was delayed in elevated CO2-treated microcosms (Chapter 3). 

The statistical significance of treatment effects on monthly rates of evapotranspiration is 

presented in Table 5.6. Main effects of CO2 and water treatments were highly significant 

in September, but their interactive effect was not significant. In the subsequent three 

months (October to December), effect of CO2 treatment and its interaction with water 

treatment were statistically significant while effect of water treatment was statistically 

significant only in October. The period between January and March marked a second 

phase of evapotranspiration, and the main effects of CO2 and water treatments were 

statistically significant, while their interaction was significant only in February. In the 

third phase of response during April and May, treatment main effects and their 

interactions were also significant, except for the CO2 treatment in May. Recorded weekly 
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rates of evapotranspiration ranged from just over 0.5 kg at beginning of growing season 

to just under 2.5 kg by end of growing season. 

Table 5.6: Statistical significance of treatment effects on total monthly 
evapotranspiration in the third year. 

Month Statistical si2nificance of treatment effect 

CO2 Water Interaction 

September P = 0.0013 P < 0.0001 P = 0.287 (NS) 

October P < 0.0001 P = 0.0148 P = 0.0012 

November P = 0.0005 P = 0.084 (NS) P = 0.0419 

December P = 0.0157 P = 0.54 (NS) P = 0.0311 

January P = 0.001 P < 0.0001 P = 0.348 (NS) 

February P < 0.0001 P < 0.0001 P = 0.019 

March P < 0.0001 P < 0.0001 P = 0.111 (NS) 

April P = 0.0021 P < 0.0001 P = 0.0461 

May P = 0.203 (NS) P < 0.0001 P = 0.0012 

5.3.4.4 Volumetric soil water content 

Response patterns observed in the third year were very similar to those observed in the 

second year. Soil water content generally increased with soil depth in all treatments 

Figures 5.14: (a-c). The clay layer at the bottom of plant pots retained higher soil water 

than the rooting and surface layers. Treatment effects on soil water content could be 

described as follows: elevated CO2 + 120%MAR induced the highest retention of soil 

water, while ambient CO2 + MAR induced the lowest retention of soil water at all soil 

depths. Further still, a lot of similarities were observed in values of water content 

recorded for microcosms treated with elevated CO2 + MAR and ambient CO2 + 

120%MAR. 
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Figure 5.10 Treatment effect on cumulative evapotranspiration in the third year. 
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Figure 5.11: Treatment effect on change in pot mass as a consequence of soil water 
status in the third year. 
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Figure 5.14 (a-c): Treatment effect on volumetric soil water content in the third year 
measured at different depths before a watering event. 
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5.4 Discussion 

Three direct methods of measurement viz., weekly evapotranspiration by lysimetry, long-

term change in pot mass, and soil water content, were used to assess treatment effect on 

community water use, in an attempt to answer the key question of whether community­

level water use will be changed by long-term exposure to elevated CO2. The data 

obtained by all three methods support hypothesis 1 which postulated that long-term 

exposure to elevated CO2 will change community-level water use. There was also some 

evidence that evapotranspiration responses are dependent on water supply, thus 

supporting hypothesis 2. When community water use data were interpreted in the light of 

results of the previous two chapters (Chapters 3 and 4), it became apparent that 

evapotranspiration responses were related to stages of canopy development, as postulated 

by hypothesis 3. It is important to mention that an indirect assessment of treatment effect 

on community water use will also be considered from gas exchange measurements of 

canopy water vapour fluxes in Chapter 6. 

To illustrate support for hypothesis 1, it appears that long-term exposure to elevated CO2 

does change community-level water use, elevated CO2 reduced community 

evapotranspiration where the highest recorded cumulative reduction was 12% under 

elevated CO2 + MAR relative to a 7% reduction under elevated CO2 + 80%MAR in the 

first year. In the second year, an 8% reduction in cumulative evapotranspiration was 

recorded under elevated CO2 + MAR. Even though cumulative evapotranspiration was 

higher in the second year relative to the first year, there was more biomass produced per 

kg of water lost under elevated CO2 + MAR in the second year, hence WUE was higher 

in that treatment. This (WUE) remained relatively unchanged in other treatments. The 

lowest reduction in evapotranspiration under elevated CO2 was recorded in the third year. 

Two-way AN OVA interactions serve as a powerful tool for assessing if responses to one 

experimental factor are dependent on another experimental factor, and in this study the 

interactions are particularly important for assessing if responses to CO2 treatment are 

dependent on water supply because of the anticipated reduction in rainfall reliability 

predicted for South Africa (Ellery et al. 1991). The second hypothesis at the beginning of 
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this chapter states that responses of community water use to C02 treatment will be 

dependent on water supply. Analysis of evapotranspiration data showed significant 

treatment interactions in the first and second years but not in the third, suggesting that 

responses to CO2 treatment were dependent on water supply only in the first and second 

year. It is speculated that the relatively lower annual cumulative water loss observed in 

the third year relative to first and second years, together with small differences in 

evapotranspiration that were observed between treatment in the third year could have 

resulted in lack of interaction between C02 and water treatments. Dependence of CO2 

responses on water supply has been reported in other studies on grasslands, with a major 

trend being greater effect of CO2 response in years of low rainfall or soil water 

availability. In this study however, greater effect of CO2 response was observed at MAR. 

Hypothesis 3 stated at the beginning of this chapter postulates that evapotranspiration 

responses will be related to canopy development, and the trends in monthly cumulative 

evapotranspiration fully support the hypothesis. Differences in water loss were not 

apparent at the beginning of the growing season because surface evaporation was the 

predominant process of community water loss due to lack of foliage. At the beginning of 

each growing season microcosm communities receiving higher water supply lost 

relatively more water irrespective of CO2 treatment, and in some instances effect of CO2 

treatment was not statistically significant during the first two months of application of 

treatment. As the growing season progressed, the rate of water loss was higher in 

communities with greater leaf area development, and highest levels of monthly 

evapotranspiration were recorded at the time of full canopy in all three years. A striking 

difference in monthly water loss was observed towards end of the growing season as a 

result of interactions of CO2 and water treatment whereby a delay in senescence was 

induced. 

Reduction of community evapotranspiration under elevated CO2 is a culmination of 

several phenomena operating at different scales of community organisation (stomatal 

conductance, leaf transpiration, sap flow, energy balance etc) and sometimes logistics do 

not permit assessment of all of these parameters in a single study. But, analysis of data in 
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the literature shows trends of positive effects of elevated C02 on these various parameters 

that serve as indicators of community water use. The tallgrass prairie has been 

extensively studied in this regard, and reductions in stomatal conductance, canopy 

conductance, sap flow and evapotranspiration have been measured (Ham et al. 1995) as 

well as reductions in transpiration (Bremer et al. 1996). A 22% reduction in ET was 

measured in the tallgrass prairie relative to the 10% measured in the current study. In a 

model grassland community derived from the Negev in Israel, Griinzweig and Komer 

(2001) measured 2% reduction in ET under an elevated C02 treatment of 400 ppm and 

11 % reduction under 600 ppm. 

Consequences of reduction in ET for biomass production under different treatments could 

be summarised as follows: firstly WUE was higher under elevated CO2 + MAR relative 

to other treatments in all three years. Secondly, increases in the amount and frequency of 

water supply from one year to another did not instantaneously enhance WUE in all 

treatments; WUE was enhanced only at elevated CO2 provided the increase in water 

supply did not exceed MAR. Thirdly, continued ample supply of watering as 

characterised by treatments in years two and three, enhanced soil water accumulation 

(section 5.3.3.2) without a corresponding enhancement in production. 

Reduction in ET resulted in higher volumetric soil water content measured under elevated 

CO2 in the current study, and the trend was further confirmed by a measurable increase in 

mass of plant pots due to water accumulation in the soil. Soil water content was found to 

increase with soil depth, hence the soil in the rooting layer was found to be on average 

20% wetter than soil on the surface under elevated C02. Improved soil water status of 10-

28% was measured in a study using grassland assemblages (Volk et al. 2000). Deep 

drainage has also been observed to increase under elevated CO2 in some grassland studies 

as a consequence of soil water accumulation under elevated CO2 (Jackson et al. 1998; 

Griinzweig and Komer 2001), especially during the wetter part of the growing season 

and not during the drier part of the growing season (Griinzweig and Komer 2001). In the 

current study, drainage loss was measured only when single water applications were in 

excess of the equivalent of 25mm rainfall event during the first year. Treatment effects on 
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drainage loss were not significant, and that parameter was subsequently not measured in 

the second and third years. 

Effect of swapping water treatments between MAR and 120%MAR in the third year were 

not profound, and even a reduction in biomass production that occurred in the last year 

could not be attributed to such an experimental manipulation. 

In conclusion, the data presented in this chapter have unequivocally shown through 

application of three methods of assessment, namely evapotranspiration, change in pot 

mass as a consequence of soil water accumulation, and measurements of soil water 

content, that elevated CO2 reduces community water use. Consistent observations in that 

regard were made throughout three years, and evapotranspiration was reduced by 

approximately 12% under elevated CO2. The balance between evaporation and 

transpiration seems to regulated by leaf area index to a certain extent, because under 

80%MAR, there was low leaf area index hence most water was lost by evaporation 

through the soil surface. The data also showed that community responses of water use 

were dependent on water supply. Microcosms that received high water supply under both 

CO2 treatments invariably underwent higher rates of evapotranspiration than microcosms 

receiving lower water supply. The highest response of community water use were 

recorded at elevated CO2 + MAR. These results are in agreement with findings of similar 

studies on grassland communities in other parts of the world. 
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CHAPTER 6 

COMMUNITY CARBON AND WATER VAPOUR EXCHANGE 

6.1 Introduction 

Measurement of carbon and water vapour fluxes is a requisite for quantifying 

community/ecosystem carbon and water balance, which in turn illustrate energy and 

material flow across spatial and temporal scales. The significance placed on flux 

measurements has increased substantially with the trend of continuous increase in 

concentrations of atmospheric C02, because of the application of these measurements 

to predictions of ecosystem responses and their feedbacks to global climate change 

(Mooney 1991; Mooney et al. 1991 ; Pitelka 1994). 

Carbon balance of a community/ecosystem integnites all aspects of carbon 

metabolism, including photosynthesis, plant respiration and soil respiration. The total 

carbon fixed in gross photosynthesis is referred to as gross primary production (GPP), 

whereas GPP minus total plant respiration is net primary production (NPP). An 

alternative definition of NPP is the total organic matter produced over a given time 

interval, usually annual (Chapter 4). Descriptively, NPP constitutes the total annual 

above- and below-ground growth increment, together with the amount of growth lost 

in decomposition, herbivory, reproduction, plant death, root exudation, senescence, 

and volatilisation (Long et al. 1989, 1992; Roberts 1993). 

Measurement of net carbon exchange (NCE) or net ecosystem production (NEP) is a 

non-destructive technique for estimating production, and can complement destructive 

methods (such as biomass harvesting) to determine production (Chapter 4). In some 

treatments, NCE and NEP are used interchangeably, but more often than not, NCE is 

used to refer to measurements of gas exchange rates over time scales of hours. NEP 

on the other hand is used to refer to processes, if measurements are based on 

ecosystem carbon exchanges measured over a minimum period of one year. Net 

carbon exchange of a community/ecosystem can be positive, negative or zero 

depending on the dynamics of carbon balance within a system. In grasslands for 

example, a large component of annually produced biomass tends to turn over, with a 

result that there are no large pools of accumulating biomass, hence NCE may be 
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somewhat balanced. However, if carbon sequestration occurs, the build up in soil 

carbon can turn the system into a carbon sink. On the other hand, occurrence of 

disturbance such as fIre lead to loss of accumulated carbon sinks, thus causing the 

carbon balance of the system to become negative, which makes the system a carbon 

source. Systems that undergo recurring disturbance would therefore have a carbon 

balance characterised by a series of peaks and troughs as the dynamics change from 

positive to negative or sink to source. 

Early experimental investigations on response of C3 vs. C4 communities to C02 

enrichment in natural grass vegetation have been undertaken in the C3 tussock tundra 

(Grulke et al. 1990), in C3 and C4 monospecifIc stands in the salt marsh (Drake and 

Leadley, 1991), and in the C4 tallgrass prairie (Ham et al. 1993). Expectations were 

that communities would respond along predictions based on differences in 

photosynthetic pathways, whereby C3 species would constitute a stronger sink in their 

respective communities compared to C4 species. Initial [mdings from C3 tussock 

tundra studies indicated that elevated CO2 induced a negative annual carbon balance. 

However, recent [mdings from the tussock tundra indicated a previously 

undemonstrated capacity for that ecosystem to adjust to decade long changes in 

climate by acting as a net sink for atmospheric CO2 during the summer growing 

season, yet remaining a source on an annual basis (Oechel et al. 2000). The response 

mechanism was attributed to adjustment at different levels (plant, soil, microbial, and 

whole-ecosystem) including nutrient cycling, physiological acclimation, and 

population and community reorganisation. In the wild C3/C4 salt marsh ecosystem, 

elevated CO2 signifIcantly increased net carbon exchange of the C3 community 

components, but had much less effect in the C4 community components (Drake and 

Leadley, 1991). The positive response of the C3 community was further supported by 

a modelling simulation (Rasse et al. 2003). In the C4-dominated tallgrass prairie, 

elevated C02 positively enhanced net carbon exchange only when water was limiting 

(Ham et al. 1993). In a C3 annual grassland, Freeden and co-workers (1995) reported 

increased net ecosystem CO2 uptake under elevated CO2, but the capacity of the 

response was reduced by acclimation due to a decrease in rubisco activity. 

Most of these early studies on community fluxes were carried out in open-top 

chambers. Subsequent research in other ecosystems has predominantly employed the 
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eddy correlation technique as part of the long tenn ecological monitoring of climate 

change impacts. 

Measurement of community water vapour fluxes is important for detennination of 

community/ecosystem water balance. In Chapter 5, community ET was measured by 

lysimetry, and the data were interrelated with measurements of soil water status 

(change in pot mass as a consequence of soil water accumulation) to estimate water 

balance of the microcosm communities. In the work reported in the current Chapter 

ET was measured by flux exchange of water vapour from the canopy, the advantage 

being that shorter time scale mechanism of water savings is revealed. The use of 

several methods for assessment of community water use in this study was found 

necessary to gain confidence in the results, taking into consideration the importance 

attached to understanding effects of elevated C02 on community water use and its 

implications for community production. Effect of elevated CO2 on ET of grasslands is 

attributed to reduction in stomatal conductance (gs), and effect of gs on ET under 

elevated C02 is recognised as the second most responsive parameter after 

photosynthesis (Field et al. 1995). Exhaustive studies of community water vapour flux 

that have influenced the current scientific dogma on effects of elevated C02 on 

ecosystem ET were undertaken in the C4-dominated tallgrass prairie. Results of these 

studies showed a 22% reduction in daily ET under elevated CO2 (Ham et al. 1995) 

and a 50% reduction in stomatal conductance (Owensby et al. 1997), and therefore 

tying in with other work (Wand et al. 200 1) that shows a reduction in gs at the leaf 

level. 

Carbon and water vapour flux responses to elevated CO2 are more readily 

comprehended at the leaf level than they are at the canopy level, because of the 

complexities of the canopy boundary layer and light regime. Such complexities occur 

because each leaf in a canopy modifies the environment of adjacent leaves through 

reduced irradiances, wind speed, and vapour pressure deficit. Furthennore, canopy 

fluxes are generally greater than the sum of fluxes of individual leaves due to 

contributions of the rhizosphere. As a result, carbon and water vapour fluxes of 

vegetation canopies cannot be adequately predicted from the study of individual 

leaves. The open-top chamber technique is widely used for canopy flux studies 

(Drake and Leadley, 1991, Grulke et al. 1990, Ham et al. 1995). Nonetheless, 
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influence of chamber microclimate conditions cannot be overlooked. Measurement of 

chamber microclimate conditions performed during experimental set-up indicated an 

increase of 3-5 °c in air temperature within the canopy, more than 5% reduction in 

PAR compared with conditions outside the greenhouse (Section 2.5). Nonetheless, 

Jones et al. (1985) previously suggested that physiological responses to elevated CO2 

are often not sensitive to temperature changes less than 5 °c (Jones et al. 1985). 

Besides, a similar effect of chamber microclimate was prevalent in all microcosms in 

this study. 

The main objectives of undertaking measurements of canopy carbon and water vapour 

exchange are to investigate whether (i) South African C4-dominated grassland 

communities can increase C02 uptake under elevated CO2 (ii) whether their water use 

will be reduced, and WUE will change under elevated CO2 and (iii) whether the 

response patterns in (i) and (ii) above relate to water input and subsequent canopy 

development/LA!. 

6.2 Materials and methods and data analysis 

6.2.1 Materials and methods 

Monthly measurements of day-long (diel) community gas exchange were performed 

on four pots of each of the four treatments, at intervals of one hour beginning at about 

7:00 a.m. and ending at about 5:00 p.m. ALi-Cor 6262 C021H20 IRGA was used in 

differential mode to record CO2 and water vapour fluxes. The polycarbonate 

chambers on the plant pots were fitted with detachable polycarbonate chimneys 

during measurement. Four chimneys at a time were fitted to four open-top chambers 

attached to four replicate microcosms. Two manifolds made of tubing and four plastic 

taps (Festo (Pty) Ltd. Durban, South Africa) were connected each to the reference and 

sample air inlets of the IRGA. Each manifold opened into four long pieces of tubing. 

The tubing coming out of the "reference air" manifold were connected through small 

ports at the base of four risers (Figures 2.1.b and c) supplying ambient or elevated 

CO2 air to each of four replicate microcosms. The tips of tubing connected to the 

"sample air" manifold sampled air from 5 cm below the top of exit chimneys on the 

open-top chambers. Gas exchange of four replicate microcosms was measured within 

15 minutes by manually recording ten intermittently random readings of differentials 

of CO2 and water vapour exchange. Thereafter, the chimneys and manifolds were 
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cycled to another set of treatment replicates to take measurements. It took 

approximately 15 minutes to perform measurements on four replicates per treatment, 

which was sufficient to complete 16 hourly measurements for all treatments. Hourly 

readings of PAR inside the greenhouse were also recorded along with flux 

measurements. 

6.2.2 Data analysis 

Fluxes of carbon and water vapour per unit ground area of microcosms were 

calculated from recorded differential values of C02 and H20:-

Carbon flux = (flow rate x ~C02)/microcosm ground area 

ET = (flow rate x ~H20)/microcosm ground area 

Flow rate in the chambers was maintained at about 0.381m3 min-I in order to enable 

three changes of air per minute (381 I min-I which was equivalent to 0.283 mol sec-I). 

The ground area of the microcosms was 0.159 m2. ~C02 values were recorded in 

umol/mol, and ~H20 values were recorded in mmol mOrl. Daily time course response 

curves of carbon and water vapour fluxes were determined for each of the four 

replicate treatments. Subsequently, the area under each replicate response curve per 

treatment was calculated by integration to produce four replicate daily estimates of 

carbon and water vapour fluxes per treatment. Daily estimates were considered as 

representative of monthly estimates, and the monthly estimates were plotted to 

produce an annual time course of community fluxes. Statistical significance of 

treatment effects on the monthly and annual estimates of canopy fluxes was tested by 

two-way ANOV A. Also, an annual time course of photosynthetic efficiency was 

determined for each treatment as the quotient of total CO2 assimilated during the 

measurement period in each month and total incident PAR for that period. 

Dark respiration rate on any measurement day was determined as the mean value of 

respiratory fluxes indicated as negative assimilation on the diel response curve. Total 

daily respiratory flux was determined by integrating the mean value of dark 

respiration rate over the total number of hours of "no light". The analysis does not 

take into consideration the differences in dark respiration rate during the day and 
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night that arise as a result of differences in temperature. Nonetheless, extreme 

fluctuations in temperature were minimised through-out the experiment because the 

microcosm set-up was housed under controlled greenhouse conditions. Ultimately, 

total annual respiratory fluxes were compared with total carbon assimilation, in order 

to estimate the carbon balance of the microcosms for the duration of each year. 

6.3 Results 

6.3.1 Community fluxes in the second year 

6.3.1.1 Carbon flux 

The die I response of community carbon exchange was characterised by low rates of 

carbon fixation in the first three hours of measurement (7:00-9:00 a.m.), followed by a 

steady increase in carbon fixation as PAR increased (Figure 6.1). A daily maximum 

rate of carbon fixation was observed to occur between 12:00 noon and 14:00 p.m., 

followed by a reduction in assimilation as PAR decreased. Differences in community 

responses due to treatment effects were least apparent during the time of the day when 

PAR was low, and were highest around mid-day when PAR was high. Therefore a 

comparison of Amax was one of the rational ways of assessing treatment effect on net 

carbon exchange. Figure 6.2 shows that low values of maximum net carbon exchange 

were recorded at the beginning of the growing season and towards the end of the 

growing season. The reason for low values of Amax at the beginning of the growing 

season was that there was low LAl, and senescence at the end of the growing season 

led to a reduction in carbon fixation. Typical values of Amax at the beginning of the 

growing season ranged between 1.8 and 3.4 fJ.mol m-2s-1
• There was a distinct 

difference in Amax due to C02 and water treatment as well as their interaction at 95% 

level (Table 6.1). Treatment interactions were not statistically significant at the 

beginning of full canopy development during December and January, even though 

differences in Amax during that period of rapid growth were even greater in absolute 

values. Peak photosynthetic activity of the communities was measured in February, 

and high rates of net carbon exchange were measured in all treatments. Rates of 

carbon fixation at peak season ranged between four to seven-fold relative to the 

beginning of the growing season, and the highest relative increase occurred under 

ambient CO2 treatments. That observation implies that microcosms exposed to 

ambient CO2 fixed a large amount of carbon only for a limited period of about four 
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weeks at peak season, while more steady rates of carbon fixation occurred under 

elevated C02 consistently throughout peak season. Differences in response to 

treatments were not so pronounced during the peak season, relative to the preceding 

stage of canopy development. In the later phase of growth, lower rates of net carbon 

exchange were measured in all treatments, but still the rates of carbon exchange 

measured at the end of the growing season were still approximately twice as high as 

the rates measured at the start of the growing season. 

Table 6.1: Statistical significance of treatment effect on maximum rate of community 
carbon exchange (Amax) in the second year. 

Statistical significance of treatment effect 

Month CO2 Water Interaction 

October P < 0.001 P < 0.001 P < 0.001 

November P < 0.001 P < 0.001 P = 0.0019 

December P < 0.001 P < 0.001 P = 0.36 (NS) 

January P < 0.001 P < 0.001 P = 0.0057 

February P < 0.001 P = 0.0005 P < 0.001 

March P < 0.001 P < 0.001 P < 0.001 

April P < 0.001 P = 0.207 P < 0.001 

May P < 0.001 P < 0.001 P < 0.001 

Effect of time of year on Amax was analysed by a three-way ANOV A, where all data 

were pooled to three factors namely, month, CO2 treatment, and water treatment. 

Results of the three-way ANOVA showed a significant effect of "month" at 95% 

level (Table 6.2). A multiple comparison test was performed to assess differences in 

Amax recorded in different months. Table 6.3 shows results of the multiple comparison 

test, and it emerges that the biggest differences in Amax became apparent during the 

months of full canopy development, viz., December, January, February, and March. 
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Table 6.2: Results of a three-way ANOV A for C02 x water x month on Amax at the 
a = 0.05 level, in the second year. 

OueTo 

Main Effects 

Month 

CO2 

Water 

2Wa Y Interactions 

Month)( CO2 

M onth)( Water 

C02)( Water 

Y Interactions 3Wa 

Month )( C02)( Water 

Explained 

Error 

Total 

Sum of 
Squares 

969610.150 

898850.542 

67629.225 

3130.383 

20141.722 

13366.210 

4697.000 

2078.513 

3795.777 

3795.777 

993547.650 

453.020 

994000.670 

Mean 
OoF Square F·Stat Signif 

9 107734.461 22830.136 0.0000 

7 128407.220 27210.925 0.0000 

1 67629.225 14331 .389 0.0000 

1 3130.383 663.363 0.0000 

15 1342.781 284.550 0.0000 

7 1909.459 404.636 0.0000 

7 671 .000 142.192 0.0000 

1 2078.513 440.460 0.0000 

7 542.254 114.910 0.0000 

7 542.254 114.910 0.0000 

31 32049.924 6791 .737 0.0000 

96 4.719 

127 7826.777 

Data from the diel responses was integrated to yield estimates of daily net carbon 

exchange in units of mmol m-2d-1 on a annual time course (Figure 6.3). The trend in 

daily carbon flux of the different months was very similar to the pattern observed for 

the trend in Amax during the course of the growing season. 

Annual photosynthetic light use efficiency (LUE) (Figure 6.4) reached a peak 

between January and March. The duration of peak phase lasted longer in elevated C02 

treatments relative to a more brief peak phase in ambient CO2. Differences in LUE 

between treatments were less pronounced in the first two months of measurement, 

possibly as a result of a slow rate of leaf biomass development rather than limiting 

PAR. Differences between treatments were not statistically significant (P > 0.05) 

during the first two months of measurement, as well as during February. 

Differences in dark respiration rate were observed during December to April (Figure 

6.5). Respiratory fluxes were particularly high under elevated CO2 + 120%MAR, 

relative to other treatments. The integrated data on CO2 assimilation rate and dark 

respiration of different months was ultimately summed to yield estimates of annual 

net carbon exchange of microcosms under different treatments (Figure 6.6), for the 

period of 273 days that the experiments were conducted. Overall, respiratory loss 

accounted for 30% of assimilated CO2 during the period of active canopy 
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development. Hence, microcosm communities in both ambient and elevated CO2 

served as sinks of for atmospheric C02 during all phases of active canopy 

development. Gas exchange measurements were not undertaken during the dormant 

phase. Even though respiration would continue to occur after senescence, a limitation 

would ensue as a result of reduced water supply during the dormant phase of the year. 

The data also showed a marked difference of about 20% in annual net carbon 

exchange due to C02 treatment, but the differences due to water treatment within 

ambient and elevated C02 groups were not significant. 
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Table 6.3: Tukey-HSD multiple comparison test for integrated daily values of rate of community carbon exchange in different months of the growing season, measured 
in the second season for all treatments combined, and data classified by month at the 95% significance level. 
* denotes significantly different pairs. Vertical bars show homogeneous subsets. 

Month Cases Mean October May April 

October 16 48.5250 · · 
May 16 89.1375 · 

April 16 107.0625 · 
November 16 116.4063 · 
December 16 171 .1563 · · · 

March 16 227.3063 · · · 
January 16 245.7188 · · · 

February 16 308.9000 · · · 

November December March 

· · · · · · · · · · · · · · · · · · 

January February 

· · · · · · · · · · · · · I 

I 
I 
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• Elevated C02 + 120%MAR 0 Elevated C02 + MAR 

• Ambient C02 + 120%MAR 0 Ambient C02 + MAR 

Figure 6.1: Typical diel response of community net carbon exchange per unit ground 
area of microcosm, shown for the first month of measurement in the second 
year. 
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Figure 6.2: Treatment effect on values of maximum rate of net community carbon 
exchange (Amax) per unit ground area of microcosm, in the second year. 
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Figure 6.3: Integrated daily net carbon exchange (mmol m-2d-l
) per unit ground area 

of microcosm, on an annual time course in the second year. 
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Figure 6.4: Treatment effect on photosynthetic efficiency (mmol CO2 mol - I quanta) 
in the second year. 
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Figure 6.5: Treatment effect on annual course of respiratory flux (mmol m-2d-1
) per 

unit ground area of microcosm, in the second year. 
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Figure 6.6: Treatment effect on integrated annual carbon exchange (mmol m-2) per 
unit ground area of microcosm, in the second year. 
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6.3.1.2 Water vapour flux 

Trends in diel water vapour flux depicted low rates of ET in the morning and in the 

afternoon, and the highest rate of water loss was reached by mid-day for the most part 

of the growing season (e.g. Figure 6.7.). Rate ofET before noon seemed to be slightly 

higher than rate of ET in the afternoon. The biggest differences in water loss between 

treatments occurred during the time of day when ET was highest. 

An annual time course of integrated daily rates of ET showed relatively low rates of 

water loss in the first two months of the growing season (Figure 6.8), characterised by 

very small differences, that were nonetheless statistically significant at 95% level 

(Table 6.4), except for the effect of water treatment during November. The low rate of 

ET at the beginning of the growing season (October and November) was about 50% 

less than rate of water loss at the end of the growing season (April and May). 

However, the amount of watering applied in the first two months of the growing 

season (October and November) was about one and a half times higher than amount 

of watering applied in the last two months of annual measurement (April and May). It 

is postulated that the high rate of ET observed at end of the growing season despite 

low amount of watering applied occurred because there was a substantial amount of 

water in the soil at end of the growing season, as well as greater canopy area at the 

end of the growing season. Even though senescence was starting to take place by 

April, hence reducing the proportion of leaf area actively contributing to 

transpirational water loss, a fair proportion of the water that was conserved during the 

course of the growing season could still be lost by evaporation from the soil surface. 

The highest rates of daily integrated ET were recorded in January, during the time of 

peak net carbon exchange. Effect of treatments on daily annual trend in ET was 

summarised as higher ET under ambient CO2 treatments relative to elevated CO2, and 

also as higher in microcosms receiving 120%MAR than MAR. 
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Table 6.4: Statistical significance of treatment effect on once a month measurements 
of water vapour flux integrated over a day. 

Statistical significance of treatment effect 

Month CO2 Water Interaction 

October P < 0.001 P < 0.001 P < 0.001 

November P < 0.001 P = 0.52 P < 0.001 

December P < 0.001 P < 0.001 P < 0.001 

January P < 0.001 P < 0.001 P = 0.0057 

February P < 0.001 P < 0.001 P < 0.001 

March P < 0.001 P < 0.001 P < 0.001 

April P < 0.001 P < 0.001 P < 0.001 

May P < 0.001 P < 0.001 P < 0.001 

Data on ET was pooled for all treatments and all months of the growing season to 

generate three factors, viz., C02, water and month. A three-way ANOVA was applied 

to pooled data to assess whether differences in ET that were observed in different 

months were statistically significant. Results of the three-way ANOV A showed a 

significant effect of "month", C02 and water at 95% level (Table 6.5). 

Table 6.5: Results of a three-way ANOV A for CO2 x water x month on ET at the 
a = 0.05 level, in the second year. 

Due To 

Main Effects 

Month 

CO2 

Water 

2Wa y Interactions 

Month)( CO2 

M onth)( Water 

C02)( Water 

y Interactions 3Wa 

Month )( C02)( Water 

Explained 

Error 

Total 

Sum of 
Squares DoF 

46684.110 9 
41121 .966 7 

3694.776 1 
1867.369 1 

2154.456 15 

1186.912 7 
830.799 7 

136.744 1 

251.456 7 

251.456 7 

49090.022 31 
7.083 96 

49097.105 127 

Mean 
Square F-Stat Signi 

5187.123 70309.049 0.0000 
5874.567 79627.022 0.0000 
3694.776 50080.970 0.0000 
1867.369 25311 .318 0.0000 
143.630 1946.844 0.0000 
169.559 2298.292 0.0000 
118.686 1608.728 0.0000 
136.744 1853.508 0.0000 
35.922 486.910 0.0000 
35.922 486.910 0.0000 

1583.549 21464.273 0.0000 
0.074 

386.591 
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A multiple comparison test was performed to fmd out how ET differed among months 

of the growing season. Table 6.6 shows results of the multiple comparison test, which 

categorises responses of ET into three groups. The three categories can be 

conveniently described as low, intermediate, and high. Low rates of ET occurred at 

the beginning (October and November) and end of the growing season (May) while 

high rates ofET occurred at peak season (January and February). Intermediate rates of 

ET were observed at transitional stages of canopy development, from beginning of the 

growing season to peak season (December) and from peak season to end of the 

growing season (March and April). 

Annually integrated ET was highest under ambient CO2 + 120%MAR, followed by 

ambient CO2 + MAR, then elevated CO2 + 120%MAR, and was least under elevated 

CO2 + MAR (Figure 6.9). 

Community flux data were further analysed by calculating the ratio of community 

carbon assimilation to community water loss of the annual integration and annual 

totals, in order to estimate seasonal and annual WUE. Overall, annual WUE was 

highest at the beginning and at the end of growing season, and was lowest in the 

middle of the growing season when the canopy was undergoing high rates of 

physiological activity (Figure 6.10). The between treatment analysis showed 

significantly higher WUE in elevated CO2 relative to ambient CO2. The among 

treatment analysis indicated smaller differences due to water treatment under elevated 

CO2 at the beginning of the growing season, and the differences became larger 

towards the end of the growing season, with higher WUE observed at MAR than 

120%MAR towards the end of the growing season in elevated C02. With regard to 

microcosms exposed to ambient CO2, there were also no differences between 

watering treatments in WUE at the beginning of the growing season and further still 

no differences in WUE at the end of the growing season. The only differences in 

WUE observed in ambient CO2 occurred at full canopy development stage. 

As expected, annual WUE was characterised by a higher trend in elevated CO2 than 

ambient CO2 (Figure 6.11). The interesting aspect of the trend was that difference due 

to water treatment among C02 levels was greater in elevated CO2 than in ambient 

CO2 (significant interaction). Furthermore, communities receiving MAR in elevated 
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C02 had a higher WUE than communities exposed to 120%MAR in elevated C02. 

Also, communities exposed to elevated C02 + 120%MAR had a higher WUE than 

those exposed to ambient CO2 + MAR. 
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Table 6.6: Tukey-HSD multiple comparison test for for integrated daily values of rate of community water vapour flux in different months of the growing season, measured 
in the second season for all treatments combined, and data classified by month at the 95% significance level. 
* denotes significantly different pairs. Vertical bars show homogeneous subsets. 

Group Cases Mean October November 

October 16 12.7188 

November 16 13.2688 

May 16 20.5250 

April 16 37.3000 

December 16 45.3375 

March 16 45.5313 

February 16 57.8063 

January 16 60.9063 

May April December March February January 

:1 

I 
I 
I 
I 
I 
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Figure 6.7: Typical diel response of community ET per unit ground area of 
microcosm, shown for the fIrst month of measurement in the second year. 
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Figure 6.8: Integrated daily community ET (mol m-2 d- I) per unit ground area of 
microcosm, on an annual time course in the second year. 
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Figure 6.9: Treatment effect on integrated annual community ET (mol mo2
) per unit 

ground area of microcosm, in the second year. 
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Figure 6.10: Treatment effect on community WUE on an annual time course in the 
second year. 
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Figure 6.11: Treatment effect on an annual estimate of community WUE in the 
second year. 

6.3.2 Community fluxes in the third year 

162 

The diel and monthly integrated trends of community carbon and water vapour flux of 

the third year were found to be very similar to the trends depicted in the figures 

presented in sections 6.3.1.1 and 6.3.1.2. This is simply because the same treatments 

were applied during the second and third years, with a slight modification of 

swapping the water treatments. To avoid redundancy, data that are very similar to that 

which has been presented in the previous sections will not be shown. However, 

interesting differences in response were noted with regards to annually integrated 

fluxes of carbon and water vapour, despite the similarity in treatments. 

A reduction of about 15-19% in annually integrated net carbon exchange occurred 

during the third year relative to the second year in microcosms subjected to elevated 

C02 treatment, but no reduction in net carbon exchange was observed in ambient C02 

(compare Figure 6.12 and Figure 6.6). Lower rates of CO2 assimilation in the third 

year suggest a less efficient use of PAR per unit ground area in the third year relative 

to the second year. Rates of dark respiration in the third year were similar to 

respiratory fluxes of the second year, and as a result the sink potential of the 

microcosms was reduced (Figure 6.12). Furthermore, the observed reduction in net 
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carbon exchange under elevated CO2 may explain some of the changes in above­

ground biomass production that were described for third year production in Chapter 4. 

There was however, no major difference in net carbon exchange data of the second 

and third years under ambient C02, and that result does not help to explain a reduction 

in above-ground biomass that occurred across treatments in the third year. 

The response pattern of ET in the third year was generally similar to the response 

pattern of the second year. The difference though, was that absolute quantities of ET 

were lower by about 8% in the third year (Figure 6.13). Incidentally, the lysimetry 

data of the third year also indicated lower rates of ET (Chapter 5). When a ratio of 

annual carbon flux to annual water vapour flux of the third year was calculated, the 

values indicated a reduction in WUE of microcosms subjected to elevated CO2 

treatment, and a slight improvement in the WUE of microcosms subjected to ambient 

CO2 treatments (Figure 6.14). 
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Fi~ure 6.12: Treatment effect on integrated annual carbon exchange (mmol m-2) per 
urnt ground area of microcosm, in the third year. 
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Figure 6.13: Treatment effect on integrated annual ET (mol m-2
) per unit ground area 

of microcosm, in the third year. 
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Figure 6.14: Treatment effect on an annual estimate ofWUE in the third year. 
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6.4 Discussion 

Measurements of community carbon and water vapour fluxes were undertaken as a 

non-destructive technique for estimating annual time course of community production 

and water use in the microcosms. Monthly measurements of community carbon 

exchange relate community production to seasonal canopy development stages, 

particularly leaf biomass development (Chapter 3). Integration of monthly 

measurements of community carbon exchange over a growing season complement 

end of growing season harvest data as indicators of community production (Chapter 

4). Measurements of community vapour flux were undertaken to study the annual 

time course of community water use in relation to stages of canopy development, and 

to complement water use data presented in Chapter 5. So, the objectives of measuring 

fluxes of community carbon and water vapour exchange were to investigate whether 

(i) South African C4-dominated grassland communities can increase CO2 uptake 

under elevated CO2 (ii) whether their water use will be reduced, and WUE will 

change under elevated CO2 and (iii) whether the response patterns in (i) and (ii) above 

relate to water input and subsequent canopy developmentILAI. 

The data show that microcosm communities under elevated CO2 acquired an annual 

carbon gain of about 1500 mmol m-2 over approximately 273 days in the second year 

irrespective of whether the system received 120%MAR or MAR. That value was 20-

30% higher than the carbon gain of microcosms treated with ambient CO2• In the third 

year, the carbon gain of microcosms treated with elevated CO2 decreased by about 15-

19%, while no reduction was observed under ambient CO2 over a similar interval of 

running the experiment. Proportional differences in community carbon exchange 

seem to compare well with proportional difference in pooled values of community 

above-ground biomass at ambient and elevated CO2, which were 56.2 g ± 2.3 and 

63.7 g ± 2.8 respectively (Figure 4.12). Community carbon gain remained higher later 

in the growing season under elevated CO2 in both second and third year because of a 

delay in senescence, which came about as a consequence of conserved soil water. 

Effect of water treatment on carbon exchange was highly significant during most 

periods of monthly measurement (Table 6.1). 
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Dark respiration accounted for 25-30% of C02 assimilation in the second year (Figure 

6.6). The magnitude of respiratory fluxes in the third year was 5-10% higher relative 

to the second year, and that observation was attributed to a continual accumulation of 

soil water. The proportion of dark respiration relative to CO2 assimilation was higher 

in the third year compared with the second year, partly because lower rates of CO2 

assimilation were measured in the third year. The relatively lower rates of CO2 

assimilation measured in the third year resulted in less efficient use of PAR per 

ground area. 

The annual time course of community carbon exchange suggest that stimulation by 

elevated C02 was highest earlier in the growing season compared to later in the 

growing season (Figure 6.3). Furthermore, annual trend in response followed a similar 

pattern as canopy light use efficiency (Figure 6.4), suggesting that changes in canopy 

structure may enhance light use efficiency. A significant effect of treatment on 

canopy leaf biomass placement was apparent in the top canopy layers between 40-60 

cm than in the lower canopy layers below 40 cm. The results suggest that a canopy 

structural change of increase in height due to treatment, may lead to improved canopy 

light use efficiency, and consequently greater carbon accumulation. It becomes 

apparent therefore that differences in height of plants in a community can cause 

variability in carbon exchange, with important consequences for species' competitive 

interactions. 

Effects of elevated CO2 on water vapour flux of the community integrated over the 

growing season show a very high reduction in ET. When the reduction in ET is 

coupled with an increase in rate of community carbon exchange, a huge increase in 

WUE (Figure 6.11) becomes apparent. The trend was observed in the second and 

third years, and the observation serves as corroboration of the data presented in 

Chapter 5. Annual trends in monthly ET show low rates of water loss in the beginning 

and at end of growing season, and higher rates of water loss at peak season. Treatment 

effects were statistically significant during most months of the growing season. 

Higher rates of ET observed at peak season are a consequence of increase in leaf area 

as the canopy closes, and probably increases in VPD with increasing air temperature. 
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Results of community carbon and water vapour fluxes link coherently to data 

presented in Chapters 3, 4, and 5, particularly with respect to community level 

responses of carbon exchange and water use. The chapter that follows will discuss 

leaf level gas exchange responses in order to relate contributions of individual species 

to the bigger picture. 
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CHAPTER 7 

LEAF LEVEL GAS EXCHANGE 

7.1 Introduction 

Measurement of leaf-level gas exchange of different species in a plant community 

permits deductions to be made about relative species contributions to canopy carbon 

gain and water fluxes. Furthermore, leaf gas exchange responses of plants grown in a 

community tend to differ from responses of individually grown plants because of the 

consequences of competition for resources. Wand and co-workers (1999) showed that 

leaf level gas exchange of C4 grasses grown without competition does not show any 

sink limitation, but that some species are capable of down regulating their 

photosynthetic capacity after prolonged exposure to high C02. The rate of C02 

assimilation (A) that is measured at or near light saturation determines intercellular 

C02 concentration (Cj) and influences stomatal conductance (gs). The AlCj relationship 

is important for understanding mechanisms that underlie photosynthetic responses by 

showing the limitations to photosynthesis due to carboxylation efficiency (Vcmax) 

versus light saturated rate of potential electron transport (Jmax). A measure of gs serves 

as an indication of rate of plant water use. Thus, differences in gs of different species 

in a plant community in response to elevated CO2 can help to attribute species 

contributions to community water use. Regarding light response characteristics, some 

leaves in a plant canopy continuously experience sub-optimal light conditions due to 

shading by other leaves, and during cloudy days the entire canopy experiences low 

light, as a result the capacity for photosynthetic carbon gain would be dependent on 

light-limited rate of carbon fixation; quantum yield (<1», rather than light-saturated rate 

of carbon fixation (Amax) of a light response curve. 

A systematic approach in studying responses to elevated CO2 of mixed communities 

is one that allows for response patterns to be categorised by plant functional groups 

(Poorter 1993; Box 1996, Diaz and Cabido 1997, Ghanoum et al. 2001; Wand et al. 

1999, 2001; Ni, 2003; Poorter and Navas 2003). The importance of plant functional 

groups is based on the premise that species with common functional traits show 

similar responses to change in environmental factors (Smith et al. 1997; Lavorel, 
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2002). This approach makes studies of leaf level gas exchange amenable to 

extrapolation to higher levels of plant organisation (community, ecosystem and 

landscape), in order to facilitate understanding of biosphere responses (Korner, 2000). 

Grass species used in the current study represent C3 and C4 functional groups, and 

within the C4 photosynthetic pathway, choice of species was representative of all 

three sub-types viz., NAD-ME, NADP-ME and PCK as described in Chapter 2. 

7.2 Materials and methods and data analysis 

7.2.1 Photosynthetic gas exchange 

Measurement of AlCi and light responses were performed using a Li-6400 portable 

photosynthesis system (Li-Cor, Lincoln, Nebraska, USA), in the middle of the third 

growing season during January. Measurements were generally performed on one 

individual plant per species in each chamber, thus four individuals per species per 

treatment, but in some instances, three plants per treatment were measured. Because 

of the narrow shape of plant leaves, three or four leaves arranged side-by-side without 

over-lapping were placed in the cuvette. The projected area of leaves within the 

cuvette was recorded and incorporated in the gas exchange calculations. AlCi response 

measurements were performed by varying cuvette CO2 concentrations between 50-

1000 f.llllol mor l for C4 species, and between 100-1000 /lmol morl for the C3 species. 

CO2 supply in the cuvette was by means of pressurised canisters, and was regulated 

electronically by the instrument. Light was provided by a blue/red LED light source 

inside the cuvette. Light intensity was set at 1000 /lmol morl S-l during measurement, 

and leaf temperature was maintained at 28°C. Leaves that were selected for 

measurement were allowed 15 minutes to reach steady state in the cuvette at a C02 

concentration of 380 /lmol morl before measurement commenced. During 

measurement, cuvette C02 concentrations were reduced from ambient (380 /lmol mor 

1) to 100 /lmol morl or 50 /lmol mor l for C3 and C4 species respectively, and then 

increased back to ambient, followed by a step-wise increase to 1000 /lmol mOrl. 

Sufficient time was allowed for a measurement at any CO2 concentration to reach 

steady state before proceeding to the next CO2 concentration. Upon completion of an 

AlCi response measurement, leaves enclosed in the cuvette were allowed about 5 

minutes to stabilise at growth or treatment CO2 concentration. 
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Light response measurements were performed at growth or treatment C02 

concentration, starting at a light intensity of 1000 f.,lmol morl 
S-I reducing to 50 f..lIDol 

mor l S-I. Leaf temperature was regulated to 28°C as for A/Cj response measurements. 

Once again, the leaves enclosed in the cuvette were allowed about 5 minutes to 

stabilise at saturated light before being taken out of the chamber. 

7.2.2 Data analysis 

Analysis of the AlCj and light response data was done using the mathematical function 

y = a(l_eb-eX
), described by Causton and Dale (1990), because it provided a better fit 

to the data than Michaelis-Menton functions. The latter functions tend to over­

estimate the light- and C02-saturated maximum rate of C02 assimilation (Causton and 

Dale, 1990). In the case of A/Cj response curves, "y" is the dependent variable, rate of 

C02 exchange and "x" is the independent variable "ct, "a" is the Iight- and C02-

saturated rate of C02 exchange (Jmax) which is equivalent to the maximum rate of 

RuBP regeneration, "b/c" is the CO2 compensation point (re), and "aceb" is the 

carboxylation efficiency (Vemax or k which is the slope or derivative of the curve at the 

CO2 compensation point). In the case of a light response curves, "y" is the dependent 

variable, rate of CO2 exchange (A) and "x" is the independent variable PFD, "a" is the 

light saturated rate of C02 exchange (Amax), "b/c" gives the light compensation point 

(rl), "a(l-ebr gives the dark respiration rate (RI), and "aceb" is used to derive the 

apparent quantum yield a, which is the slope or derivative of the curve at the light 

compensation point. Individual response curves were modeled independently, and the 

output presented as treatment averages. 

7 .3. Results 

Results of the AlCj and light response measurements for each species are presented in 

Figures 7.1 and 7.2 respectively, and the photosynthetic characteristics of stomatal 

conductance (gs) and instantaneous water use efficiency (WUE) for each species at 

growth C02 concentration are presented in Figures 7.3 and 7.4 respectively. The 

response curves in Figures 7.1 and 7.2 were drawn using mean values of the 

parameters (Section 7.2.2) for each treatments. 
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The rates of carbon dioxide assimilation shown in the AlCi responses in Figure 7.1 are 

low for C4 plants, particularly in relation to greenhouse and field measurements of 

Wand et al. (2001, 2002). The AlCi response of the C3 species Alloteropsis grown 

under elevated CO2 showed a lower rate of CO2 assimilation at higher cuvette C02 

concentrations compared with response of plants grown under ambient C02 (Figure 

7.1). Analysis of light response measurements for that species showed lower rates of 

light-saturated C02 assimilation (Arnax) under elevated CO2 relative to ambient CO2 

(Figure 7.2). AlCi responses of Andropogon showed slightly higher rates of C02 

assimilation in microcosms treated with ambient C02 compared with microcosms 

treated with elevated C02, although differences in Jrnax between CO2 treatments were 

not statistically significant (Table 7.2). On the other hand, Arnax measured in light 

responses of Andropogon was higher under elevated CO2 + 120%MAR compared to 

ambient CO2 treatments, but the response observed in ambient CO2 treatments was 

similar to the response in elevated CO2 + MAR. 

Results on Eragrostis, Sporobolus and Themeda showed a stimulation of CO2 

assimilation to high cuvette CO2 concentrations in AlCi response measurements 

(Figure 7.1), because plants grown under elevated CO2 had higher Jrnax. Data for those 

three species, Eragrostis, Sporobolus and Themeda suggest a long-term stimulation of 

photosynthetic response. Light response data of Eragrostis, Sporobolus and Themeda 

at growth CO2 concentration showed a higher Arnax under elevated CO2 (Figure 7.2), 

and differences between treatments were more marked in Eragrostis. 

Stomatal conductance (gs) determined from A:Ci responses at growth CO2 

concentration was generally lower under elevated CO2 relative to ambient CO2 in all 

five species at mid-season (Figure 7.3). A consequence of a reduction in gs was a 

reduction in transpiration, which resulted in higher instantaneous water use efficiency 

(WUE) under elevated CO2 (Figure 7.4). 

Data showing treatment effects on modeled photosynthetic parameters of AlCi and 

light response measurements are summarised in Tables 7.l-7.lO. Notable effects 

include a reduction in light- and CO2-saturated rate of net CO2 assimilation (Jrnax) in 

Alloteropsis and Andropogon under elevated CO2, but the reduction was not 

statistically significant. Carboxylation efficiency was lower in Alloteropsis, 
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Andropogon and Egarostis, and higher in Sporobolus and Themeda. Surprisingly, 

C02 compensation point in the C3 species Alloteropsis was much lower than values 

recorded for the C4 species. Furthermore, lower dark respiration (RI) in Alloteropsis 

was apparent and consequently a lower light compensation point in the C3 species 

under elevated C02. Quantum use efficiency was reduced in Alloteropsis under 

elevated CO2. 
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Figure 7.1: C02 response of photosynthesis (A/Ci) of the grass species measured at 
mid-season. Square symbols represent elevated C02 treatments, and circles represent 
ambient C02 treatments. Dashed lines among the circles and squares represent mean 
annual rainfall (MAR) and solid lines among circles and squares represent 
120%MAR. 
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Figure 7.1 (continued) C02 response of photosynthesis (AlCi) of the grass species 
measured at mid-season. Square symbols represent elevated CO2 treatments, and 
circles represent ambient C02 treatments. Dashed lines among the circles and squares 
represent mean annual rainfall (MAR) and solid lines among circles and squares 
represent 120%MAR. 
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Figure 7.2: Light response of photosynthesis of the grass species measured at mid­
season. Square symbols represent elevated CO2 treatments, and circles represent 
ambient C02 treatments. Dashed lines among the circles and squares represent mean 
annual rainfall (MAR) and solid lines among circles and squares represent 
120%MAR. Measurements were made under growth CO2 concentrations. 
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Figure 7.2 (continued) Light response of photosynthesis of the grass species 
measured at mid-season. Square symbols represent elevated C02 treatments, and 
circles represent ambient CO2 treatments. Dashed lines among the circles and squares 
represent mean annual rainfall (MAR) and solid lines among circles and squares 
represent 120%MAR. Measurements were made under growth C02 concentrations. 
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Figure 7.3: The response of stomatal conductance (gs) to treatment at mid-season. 
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Figure 7.4: The response ofWUE to treatment at mid-season. 
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Table 7.1. Response of AlCi parameters of Alloteropsis to treatment, presented 
together with the results of a two-way ANOV A. 

Species Parameter Treatment Value of Statistical significance 
parameter (ANOVA) 

CO2 H2O Inter-
action 

Alloteropsis Jmax Elevated CO2 + 120%MAR 7.08 NS NS NS 
(/lmol m-2 sol ) Elevated CO2 + MAR 8.50 

Ambient CO2 + 120%MAR 9.21 
Ambient CO2 + MAR 9.00 

rc Elevated CO2 + 120%MAR 6.62 NS NS NS 
(/lmol mol" ) Elevated CO2 + MAR 6.6 

Ambient CO2 + 120%MAR 7.62 
Ambient CO2 + MAR 9.3 

k Elevated CO2 + 120%MAR 0.069 NS NS NS 
(/lmol CO2 Elevated CO2 + MAR 0.083 
/lmol - ' Ci) Ambient CO2 + 120%MAR 0.09 

Ambient CO2 + MAR 0.088 

Table 7.2. Response of AlCi parameters of Andropogon to treatment presented 
together with the results of a two-way ANOV A. 

Species Parameter Treatment Value of Statistical significance 
parameter (ANOVA) 

CO2 H2O Inter-
action 

Andropogon Jrnax Elevated CO2 + 120%MAR 7.81 NS NS NS 
(/lmol m-2 sol) Elevated CO2 + MAR 8.51 

Ambient CO2 + 120%MAR 9.46 
Ambient CO2 + MAR 9.3 

rc Elevated CO2 + 120%MAR 12.33 NS NS NS 
(/lmol mol") Elevated CO2 + MAR 12.2 

Ambient CO2 + 120%MAR 12.43 
Ambient CO2 + MAR 12.18 

k Elevated CO2 + 120%MAR 0.082 NS NS NS 
(/lmol CO2 Elevated CO2 + MAR 0.089 
/lmol - ' Ci) Ambient CO2 + 120%MAR 0.098 

Ambient CO2 + MAR 0.097 
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Table 7.3. Response of AlCi parameters of Eragrostis to treatment, presented together 
with the results of a two-way ANOV A. 

Species Parameter Treatment Value of Statistical significance 
parameter (ANOVA) 

CO2 H2O Inter-
action 

Eragrostis Jmax Elevated CO2 + 120%MAR 6.86 NS NS NS 
(!lmol m-2 

S-I ) Elevated CO2 + MAR 6.64 
Ambient CO2 + 120%MAR 5.28 
Ambient CO2 + MAR 5.11 

rc Elevated CO2 + 120%MAR 10.22 NS NS NS 

(!lmol mor l
) Elevated CO2 + MAR 10.88 

Ambient CO2 + 120%MAR 10.17 
Ambient CO2 + MAR 10.98 

k Elevated CO2 + 120%MAR 0.051 NS NS NS 

(!lmol CO2 Elevated CO2 + MAR 0.049 
!lmol - I 

Cj) Ambient CO2 + 120%MAR 0.039 
Ambient CO2 + MAR 0.059 

Table 7.4. Responses of AlCi parameters of Sporobolus to treatment, presented 
together with the results of a two-way ANOV A. 

Species Parameter Treatment Value of Statistical significance 
parameter (ANOVA) 

CO2 H2O Inter-
action 

Sporobolus Jmax Elevated CO2 + 120%MAR 12.74 NS NS NS 
(!lmol m-2 

S-I) Elevated CO2 + MAR 12.02 
Ambient CO2 + 120%MAR 11 .34 
Ambient CO2 + MAR 10.69 

rc Elevated CO2 + 120%MAR 10.52 NS NS NS 
(!lmol mor l

) Elevated CO2 + MAR 10.78 
Ambient CO2 + 120%MAR 10.39 
Ambient CO2 + MAR 10.47 

k Elevated CO2 + 120%MAR 0.15 NS NS NS 
(!lmol CO2 Elevated CO2 + MAR 0.14 
!lmol - I Cj) Ambient CO2 + 120%MAR 0.13 

Ambient CO2 + MAR 0.12 
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Table 7.5. Response of AlCi parameters of Themeda to treatment, presented together 
with the results of a two-way ANOV A. 

Species Parameter Treatment Value of Statistical significance 
parameter (ANOVA) 

CO2 H2O Inter-
action 

Themeda Jmax Elevated CO2 + 120%MAR 13.12 NS NS NS 
(J..lmol m-2 

S- I ) Elevated CO2 + MAR 13.70 
Ambient CO2 + 120%MAR 11.09 
Ambient CO2 + MAR 11.64 

rc Elevated CO2 + 120%MAR 11.66 NS NS NS 
(J..lmol mor l

) Elevated CO2 + MAR 13.73 
Ambient CO2 + 120%MAR 13.7 
Ambient CO2 + MAR 13.7 

k Elevated CO2 + 120%MAR 0.12 NS NS NS 
(J..lmol CO2 Elevated CO2 + MAR 0.13 

J..lmol - I 
Ci) Ambient CO2 + 120%MAR .011 

Ambient CO2 + MAR 0.12 

Table 7.6. Treatment effect on light response parameters of Alloteropsis, presented 
together with the results of a two-way ANOV A. 

Species Parameter Treatment Value of Statistical significance 
parameter (ANOVA) 

CO2 H2O Inter-
action 

Alloteropsis Amax Elevated CO2 + 120%MAR 11.08 NS NS NS 
(J..lmol m-2 S- I) Elevated CO2 + MAR 10.61 

Ambient CO2 + 120%MAR 13.91 
Ambient CO2 + MAR 13.88 

r l Elevated CO2 + 120%MAR 12.09 NS NS NS 
(J..lmol m-2 

S- I ) Elevated CO2 + MAR 20.84 
Ambient CO2 + 120%MAR 15.57 
Ambient CO2 + MAR 19.36 

a Elevated CO2 + 120%MAR 0.05 NS NS NS 
(J..lmol CO2 Elevated CO2 + MAR 0.04 
J..lmol - I Ambient CO2 + 120%MAR 0.05 
PPFD) Ambient CO2 + MAR 0.05 

~ Elevated CO2 + 120%MAR -0.7 NS NS NS 
(J..lmol m-2 S- I) Elevated CO2 + MAR -1.61 

Ambient CO2 + 120%MAR -0.93 
Ambient CO2 + MAR -1.31 
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Table 7.7. Treatment effect on light response parameters of Andropogon, presented 
together with the results of a two-way ANOV A. 

Species Parameter Treatment Value of Statistical significance 
parameter (ANOVA) 

CO2 H2O Inter-
action 

Andropogon Amax Elevated CO2 + 120%MAR 20.53 NS NS NS 
(J..lmol m-2 

S-I) Elevated CO2 + MAR 17.39 
Ambient CO2 + 120%MAR 16.86 
Ambient CO2 + MAR 15.79 

r l Elevated CO2 + 120%MAR 25.13 NS NS NS 
(J..lmol m-2 

S- I ) Elevated CO2 + MAR 39.1 
Ambient CO2 + 120%MAR 26.46 
Ambient CO2 + MAR 21.37 

a Elevated CO2 + 120%MAR 0.10 NS NS NS 
(J..lmol CO2 Elevated CO2 + MAR 0.09 
J..lmol - I Ambient CO2 + 120%MAR 0.085 
PPFD) Ambient CO2 + MAR 0.098 

R.! Elevated CO2 + 120%MAR -2.43 NS NS NS 
(J..lmol m-2 

S-I) Elevated CO2 + MAR -3.27 
Ambient CO2 + 120%MAR -2.13 
Ambient CO2 + MAR -1.98 

Table 7.8. Treatment effect on light response parameters of for Eragrostis, presented 
together with the results of a two-way ANOV A. 

Species Parameter Treatment Value of Statistical significance 
parameter (ANOVA) 

CO2 H2O Inter-
action 

Eragrostis Amax Elevated CO2 + 120%MAR 14.51 P= P= P= 
(J..lmol m-2 

S-I ) Elevated CO2 + MAR 12.54 0.02 0.04 0.03 
Ambient CO2 + 120%MAR 8.78 
Ambient CO2 + MAR 8.96 

r l Elevated CO2 + 120%MAR 19.37 p = p = p = 
(J..lmol m-2 

S-I) Elevated CO2 + MAR 17.75 0.01 0.02 0.046 
Ambient CO2 + 120%MAR 30.46 
Ambient CO2 + MAR 33.73 

a Elevated CO2 + 120%MAR 0.077 NS NS NS 
(J..lmol CO2 Elevated CO2 + MAR 0.084 
J..lmol - I Ambient CO2 + 120%MAR 0.052 
PPFD) Ambient CO2 + MAR 0.038 
Rd Elevated CO2 + 120%MAR -5.05 P= P= P= 
(J..lmol m-2 S-I) Elevated CO2 + MAR -4.54 0.001 0.003 0.0001 

Ambient CO2 + 120%MAR -1.89 
Ambient CO2 + MAR -1.99 
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Table 7.9. Treatment effect on light response parameters of Sporobo/us, presented 
together with the results of a two-way ANOV A. 

Species Parameter Treatment Value of Statistical significance 
parameter (AN OVA) 

CO2 H2O Inter-
action 

Sporobolus Amax Elevated CO2 + 120%MAR 22.48 NS NS NS 

(Ilmol m'2 S'I) Elevated CO2 + MAR 20.82 
Ambient CO2 + 120%MAR 19.57 
Ambient CO2 + MAR 17.39 

f l Elevated CO2 + 120%MAR 21.24 NS NS NS 

(Ilmol m'2 S'I) Elevated CO2 + MAR 31.17 
Ambient CO2 + 120%MAR 28.8 1 
Ambient CO2 + MAR 21.10 

a Elevavted CO2 + 120%MAR 0.12 P= P= P= 
(Ilmol CO2 Elevated CO2 + MAR 0.11 0.002 0.004 0.001 

Ilmol - I Ambient CO2 + 120%MAR 0.87 

PPFD) Ambient CO2 + MAR 0.88 

Rd Elevated CO2 + 120%MAR -2.23 NS NS NS 
(Ilmol m'2 S' I) Elevated CO2 + MAR -4.62 

Ambient CO2 + 120%MAR -2.39 
Ambient CO2 + MAR -2.19 

Table 7.10. Treatment effect on light response parameters of Themeda, presented 
together with the results of a two-way ANOV A. 

Species Parameter Treatment Value of Statistical significance 
parameter (ANOVA) 

CO2 H2O Inter-
action 

Themeda Amax Elevated CO2 + 120%MAR 19.0 P= P= NS 
(Ilmol m'2 S'I) Elevated CO2 + MAR 16.3 0.007 0.01 

Ambient CO2 + 120%MAR 14.35 
Ambient CO2 + MAR 10.86 

fl Elevated CO2 + 120%MAR 23.9 NS P= 
(Ilmol m'2 S'I) Elevated CO2 + MAR 37.3 0.013 

Ambient CO2 + 120%MAR 30.9 
Ambient CO2 + MAR 46.5 

a Elevated CO2 + 120%MAR 0.074 NS NS NS 
(Ilmol CO2 Elevated CO2 + MAR 0.072 
Ilmol - I PPFD) Ambient CO2 + 120%MAR 0.059 

Ambient CO2 + MAR 0.054 
Rd Elevated CO2 + 120%MAR -0.84 NS P= NS 
(Ilmol m'2 S'I) Elevated CO2 + MAR -1.28 0.0056 

Ambient CO2 + 120%MAR -1.00 
Ambient CO2 + MAR -1.82 
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7.4. Discussion 

Leaf level gas exchange measurements were undertaken in order to relate responses of 

individual species to responses of biomass and water use at the community level. All 

five grass species were tested for short-term stimulation of C02 assimilation in 

response to high cuvette C02 concentrations by doing AlCi response measurements. 

Down regulation occurred in two species in elevated CO2 treatments, one a C3 

(Alloteropsis) and another a C4 (Andropogon) The other three species (Eragrostis, 

Sporobolus, and Themeda), all possessing a C4 photosynthetic pathway, showed an up 

regulation under elevated C02. Differences among treatments were however not 

statistically significant, except for light response of Eragrostis and Themeda. Values 

of Amax measured in this study were low relative to many C4 systems, but a pattern in 

response for Themeda was similar to [mdings of Wand et al. (2002) in the field and 

Wand (1999) in the laboratory. A contention for lack of statistical significance on 

differences in treatment effect could be optimum growth conditions that prevailed at 

the time of measurement at mid-season. While it would have been interesting to study 

annual trends in gas exchange of individual species at various phases of development 

during the growing season, greater emphasis in this study was placed on community 

responses because earlier findings of Wand and co-workers (2001, 2002) extensively 

characterised leaf level responses of all species used in this study in the greenhouse 

and in the field respectively. Nonetheless, it was pertinent to relate biomass 

production, canopy gas exchange and community water use of the microcosm 

communities in this study to the leaf level gas exchange response of individual 

species within the microcosms. 

The two species with a response of photosynthetic down regulation (Alloteropsis and 

Andropogon), contributed less to community biomass production (Chapter 4) 

compared with Sporobolus and Themeda, which did not undergo measurable 

photosynthetic down regulation at the time of leaf gas exchange measurement. In 

fact, Sporobolus and Themeda were dominant species in the community in terms of 

biomass production (Chapter 4). Photosynthetic up-regulation under elevated CO2 

was also measured in Eragrostis, as well as high rates of dark respiration. But 

biomass production in Eragrostis was higher under ambient C02 compared with 

elevated CO2, suggesting a disproportional response of leaf level photosynthesis and 

leaf biomass production in elevated CO2. A higher rate of carbon loss by respiratory 
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flux as observed for Eragrostis is one of the factors attributed to disproportional 

response of photosynthesis and biomass production (Luo et al. 1997). 

Reduction in stomatal conductance due to elevated C02 was observed in all grass 

species, and instantaneous water use efficiency remained higher under elevated CO2 

in C4 species, as well as in the C3 species. The response of stomatal conductance and 

leaf level water use efficiency tie in very well with community water use data 

(Chapter 5). Improved water use under elevated CO2 in grassland ecosystems (Ham et 

al. 1995, Freeden et al. 1996, Owensby et al. 1997 and Morgan et al. 2001) is a major 

driver of positive response in biomass production. 
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CHAPTER 8 

GENERAL DISCUSSION 

Despite substantial research effort over the past decade and more, significant 

uncertainty remains about the response of C4 grass species to rising atmospheric CO2, 

and how these will be reflected in multi-species assemblages and grassland 

ecosystems. The combined impact of rising atmospheric C02 and variable rainfall is 

an especially critical concern under future climate scenarios. This topic is of great 

importance to South Africa, both because major river catchments are found in 

landscapes characterised by C4 dominated grasslands, and because extensive 

rangeland farming activities depend on these ecosystems. Several studies in the USA 

(Ham et al. 1995, Field et al. 1997, Freeden et al. 1996, Owensby et al. 1997 and 

Morgan et al. 2001) have shown that CO2 has the potential to ameliorate the effects of 

reduced rainfall. 

Several methods were used in this study to investigate the potential impacts of 

increasing atmospheric CO2 and simulated rainfall amount on the production and 

water use of a South African C4-dominated grassland microcosm community. The 

research aimed to address the following five key questions: 

(i) Will elevated CO2 change above-ground community biomass production, 

biomass allocation, and leaf-area indices in the long-term? 

(ii) To what extent will above-ground biomass development be influenced by a 

combined effect of elevated CO2 and different watering treatments? 

(iii) Will the responsiveness and proportional representation of C4 functional types 

be altered by a combined effect of elevated CO2 and different watering 

treatments? 

(iv) Will community-level water use be changed by long-term exposure to elevated 

CO2? 

(v) What are the long-term implications of elevated CO2 on South African 

grasslands as water catchments? 

The results presented in the thesis strongly illustrate that elevated atmospheric CO2 

significantly enhanced above-ground community production and water use efficiency. 
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Increased production was largely a consequence of CO2 stimulation of only two grass 

species, Sporobolus and Themeda, out of the five grass species forming the 

microcosm communities. Species competitive interactions influenced community 

responses through treatment effects on vertical placement of leaf biomass in the 

canopy, and as a result treatment effects on canopy structure also had major 

consequences for above-ground production. Effects of elevated CO2 occurred mostly 

as a result of interactions with rainfall amount when the applied water treatment was 

lower than or equal to MAR, but independently of watering treatment when rainfall 

amount was higher than MAR. 

8.1 Community above-ground production 

End of growing season above-ground production was enhanced for three consecutive 

years under a treatment combination of elevated C02 + MAR relative to other 

treatment combinations (Chapter 4). In the first year, above-ground production under 

elevated CO2 + MAR was 74.5 g ± 3.1 per unit ground area of 0.16 m2, which is 

equivalent to 465.6 g m-2 year"l. That value was 26-36% higher than values recorded 

under other treatments in the first year. At the end of the second year, a 15-29% 

enhancement, relative to other treatments, was recorded under elevated CO2 + MAR. 

At the end of the third year the enhancement by this treatment, and other treatments 

was 15-18%. This reduction in the enhancement by elevated CO2 + MAR in the third 

year was accompanied by a general decrease in biomass production across all 

treatments (Figures 4.1a, 4.2a and 4.3a). This suggests that the reduction in 

enhancement by elevated CO2 + MAR was not simply an acclimation to elevated 

C02. The reported production values in the current microcosm experiment are 

comparable to production values recorded at the field site (Stock et al. 2004). Those 

authors measured 300-400 g m-2 annual peak standing biomass on control plots at the 

field site, relative to approximately 500 g m-2 in plots fumigated with a natural source 

of elevated CO2. However, Stock et al. (2004) indicated that differences in annual 

peak standing biomass of control and CO2-fumigated plots could not be attributed to 

CO2 fumigation alone. 

Annual comparisons for treatment effects involving elevated CO2 + the other two 

watering amounts (80%MAR and 120%MAR) on above-ground production could not 

be done because of changes in amount of water supplied. However, the objective of 
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deducing overall effects of elevated C02 + watering treatment from results obtained 

under elevated C02 + MAR is not far-fetched considering that, of the three watering 

treatments applied in the study (80%MAR, MAR, and 120%MAR), the highest 

enhancement in above-ground production in all three years, was observed under 

elevated C02 + MAR as illustrated in Figure 4.11 in Chapter 4. The annual trend in 

above-ground production of communities exposed to elevated CO2 + MAR, suggested 

a 50% reduction in growth stimulation by elevated CO2 in the long-term when results 

of the first year were compared to results of the third year. Despite this decline, 

biomass production in elevated C02 remained higher than in ambient C02. 

Furthermore, a three-year cumulative above-ground biomass production under 

elevated C02 was significantly higher than under ambient C02 (P = 0.0249), despite 

the observed reduction in enhancement of production in year one relative to year 

three. 

Acclimation to the CO2 effect on biomass production is commonly attributed to 

restriction of the rooting volume for experiments conducted within containers (Arp 

1991; Thomas and Strain 1991, Barrett and Gifford 1995, Drake et al. 1997). 

Additionally, nutrient limitation may ensue following unreplenishable uptake of 

nitrogen in container studies (Petterson and McDonald 1994), a situation that may 

lead to a phenomenon of sink strength limitation (Midgley et al. 1995). This study 

was not designed to test for the effect of root restriction; nonetheless, observations 

made at the [mal harvest showed that a large volume of the soil contained root 

material, which was indicative of some degree of root restriction. The experimental 

set-up was designed to simulate root space as it was in the field from which the 

microcosm communities were derived, hence it is speculated that some degree of sink 

limitation would occur in the field as well. 

At the beginning of the experiment, initial leaf samples were set aside for analysis of 

nitrogen and phosphorus content, for comparison with nutrient content of leaf material 

from the [mal harvest at the end of the third year. Results of that analysis showed no 

differences in nutrient status of leaf material at the beginning and at the end of the 

experiment in all treatments, although the data have not been included in the thesis 

because the samples were not sufficient for a statistical analysis to be performed. It is 

also reasonable to assume that there was little loss of nutrients from the microcosms 
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during the course of the study, because there was not drainage, and litter and 

harvested material was ashed and returned to the pots. At this point, root restriction 

remains a strong contender as cause for the observed trend in biomass production 

from first to third year. The speculation is further supported by the fact that a 

reduction in biomass production was also observed under ambient CO2 treatments in 

the third year relative years one and two. 

Field studies overcome a problem of restriction on rooting volume. However, field 

studies that are conducted in chambers can also induce microclimate conditions that 

could influence responses. Under ideal circumstances, studies that utilise FACE 

technique may be pertinent for testing the hypothesis of nutrient limitation versus sink 

strength as causes of acclimation to elevated C02, but the biggest draw-back is the 

associated exorbitant cost of such research in developing countries. Nonetheless, 

inferences can be drawn from FACE studies in the literature. For example, Rogers 

and others (1998) studied nitrogen limitation versus sink strength limitation in 

ryegrass, and concluded that acclimation was caused by limitation of sink 

development rather than it being a direct effect of nitrogen supply on photosynthesis. 

Another important highlight with regards to above-ground biomass production was an 

apparent requirement for a critical amount of water above or below which effect of 

elevated C02 on production became less marked in this particular grassland 

community. To reiterate, the highest enhancement in production under elevated C02 

occurred consistently at MAR during all three years, given a range of water treatments 

(80%MAR, MAR and 120%MAR) applied in the study. The observation is certainly 

unique to the grassland community used in this study. Reports on past studies on in 

situ grassland communities in other parts of the world have reported greater 

enhancement of above-ground production only during years when water availability 

was lower than mean annual rainfall (Owensby et al. 1993, 1997). Amelioration of 

water stress remains an adequate mechanism that influences biomass responses to low 

water availability under elevated CO2, but consensus does not exist on the type of 

mechanisms that cause waning biomass responses in surplus water under elevated 

CO2. Huxman and co-workers (1998) cited photosynthetic down-regulation as the 

cause of reduced biomass enhancement in well-watered desert plants under elevated 

CO2, suggesting that elevated CO2 ameliorates drought-induced stress to the 



Chapter 8 Discussion 189 

photosynthetic apparatus in the arid ecosystem. An observed 50% stimulation of 

production in anomalously wet years in the same arid ecosystem was reported by 

Smith et a1. (2000) to favour growth of invasive grasses. 

A conclusion that can be drawn from the data on annual and cumulative above­

ground biomass production is that a transient effect of CO2 may occur in South 

African C4-dominated grasslands, and also the degree of stimulation may vary from 

year to year depending on rainfall conditions. 

8.1.1. Influence of canopy structure, phenology and species contributions on 

above-ground production 

Species that contribute most biomass above-ground usually have the most influence 

on above-ground processes, but the degree of influence may also depend on whether 

allocation prioritises leaf biomass or stem biomass. Production of high leaf biomass 

correlates positively with high rates of canopy photosynthesis, while biomass 

allocation to reproductive stalks may depend on factors conducive to reproductive 

success such as nitrogen availability (even though this parameter was not tested in this 

study). The data showed a stem:leaf biomass allocation ratio of 1:4 in the first and 

second years, and a slight increase in allocation to leaf biomass in the third year 

(1 :4.5). Leaf biomass decreased with canopy height, but the significance of treatment 

effect on leaf biomass was realised in the upper, less dense, layers of the canopy in the 

height ranges of 40-60 cm and >60 cm, possibly because there was no limitation of 

light at the top of the canopy. During the first two years, CO2 treatment had a 

statistically significant effect on community leaf biomass while water treatment had 

statistically significant effect on community stem biomass, but, treatment effects on 

leaf and stem biomass fractions were not significant in the third year. 

The end-of-year harvestable biomass of each species was a culmination of treatment 

effect on developmental stages from time of sprouting, including time of flowering 

and annual changes in rate of leaf gas exchange (carbon fixation and water use). In 

terms of absolute values of biomass harvest at end of year, Sporobolus and Themeda 

were the dominant species in the first two years, contributing more than 50% of the 

community above-ground production. Among the dominant species, biomass of 

Sporobolus was 25% higher than biomass of Themeda at the end of the first year. By 
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the end of the second year, an increase in harvestable biomass of both Sporobolus and 

Themeda was noted while biomass of the other three grass species (Alloteropsis, 

Andropogon, and Eragrostis) had decreased. A higher biomass increment occurred in 

Themeda than Sporobolus, resulting in both species contributing almost equal 

amounts to production at the end of the second year. At the end of the third year, an 

8% reduction in biomass production was noted in Themeda, relative to a 50% 

reduction in Sporobolus, suggesting a greater degree of resilience in the dominance of 

Themeda . 

Sporobolus and Themeda also had a significantly greater proportion of leaf placement 

in the upper layers of the canopy in the height range of 20 cm and above, while the 

other three species had a greater proportion of biomass than Sporobolus and Themeda 

in the bottom 5-20 cm layer. Part of the competitive edge in Sporobolus and Themeda 

was attributed to their intrinsically tall stature, even though the same attribute was not 

advantageous to the competitive capacity of Alloteropsis and Andropogon. A further 

attribute for a positive response of Themeda was early sprouting in all three years, on 

which the CO2 treatment had a highly significant effect, even though there was no 

significant effect of water treatment nor significant interactive effect of CO2 and water 

treatments. 

Flowering occurred only in Eragrostis, Sporobolus, and Themeda in all three years. 

The effects of CO2 and water treatments and their interaction were significant on the 

flowering of Sporobolus in all three years. In Eragrostis, time of flowering was 

influenced by C02 treatment alone and not water treatment nor its interaction with 

CO2• 

Gas exchange responses at the species and community levels in this study largely 

corroborate the biomass production data. Canopy CO2 assimilation was 20% higher 

under elevated CO2 compared to ambient C02. Respiratory carbon was proportionally 

higher in elevated CO2 relative to ambient CO2, nonetheless a positive carbon balance 

was realised during the growing season. Gas exchange at the species level showed a 

photosynthetic up-regulation in response to high cuvette CO2 concentrations during 

measurements of Alci responses of Themeda and Sporobolus at mid-season. Those 

two species were dominant in the community on the basis of biomass production. 
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Photosynthetic down regulation occurred in Alloteropsis and Andropogon at mid­

season. Phenological influences must be considered in the interpretation of leaf gas 

exchange data of one-time measurement at mid-season in this study. 

8.2. Below-ground responses 

Results of this study suggest that total below-ground production of the grassland 

community did not respond to C02 and water treatments or their interaction. 

However, assessment of treatment effect on below-ground growth may have been 

complicated by the fact that new root growth was not separated from the part of the 

biomass that was present at the beginning of the experiment, and the two components 

were measured together at the fmal harvest. Root restriction may also have 

contributed to non-responsiveness of below-ground production. However, there was a 

very distinct distribution of fme root biomass with depth as determined from root 

cores, with almost 50% of root biomass present in the upper 12 cm of the soil in all 

treatments. Microcosm communities that were exposed to a lower water treatment 

overall had a higher density of root biomass in the upper soil layers. The shallow 

rooted nature of the grassland community could confer instantaneous benefit to 

growth-stimulating processes that occur predominantly in the upper layer of the soil 

such as nutrient mineralisation (Hungate et al. 1997; Arnone and Bohlen 1998), 

microbial activity (Rice et al. 1994) and earthworm activity (Zaller and Arnone, 

1997). On the other hand, shallow-rootedness could easily dispose the grassland 

community to bush encroachment because woody shrubs would have prior access to 

soil water conserved under elevated CO2 by virtue of spatial separation of their root 

systems (Bond and Midgley 2000). 

Response of the crown biomass was highly influenced by CO2 and water treatments, 

but interactively. Communities that were exposed to elevated CO2 and a higher water 

treatment allocated more biomass to the crown, implying a higher rate of reserve 

deposition for future mobilisation in those communities. There was a defmite species 

effect on crown biomass and the order of species contribution starting with the highest 

was: Eragrostis > Sporobolus > Themeda > Andropogon > Alloteropsis. Two 

questions that arise from these data are (i) whether grass species that respond to 

elevated CO2 by development of new tillers would have larger crowns than species 



Chapter 8 Discussion 192 

that respond through development of leaf area? (ii) what the long-term benefits of 

either mode of response would be with regards to competition? 

The amount of surface litter accumulated at the end of the growing season comprised 

about 5-10% of community above-ground production. An average value was about 6 

g per unit ground area of 0.159 m2
. Contribution of the two dominant grass species 

(Sporobolus and Themeda) to surface litter was proportionally higher than the 

contribution of other species. Senesced plant material started falling from the canopy 

after full canopy development. There were no significant differences in treatment 

effect on amount of surface litter accumulation in each of the three years, and even 

when considered as a three year cumulative. Lack of treatment effect on surface litter 

could also imply that the physical attributes such as insulation of soil surface that 

limits evaporation of soil water, and promotion of water infiltration were not 

influenced by the presence of different amounts of litter. It is also considered that the 

negative effects usually associated with presence of plant litter in communities (Xiong 

and Nilsson 1999) is not likely to have influenced the response of the microcosm 

communities to treatments, because a meta-analysis by Xiong and Nilsson (1999) 

suggested that litter quantities of less than 200 g m-2 are commonly associated with 

positive effects on plant communities. Soil organic matter content of the microcosms 

was also not significantly different among treatments after three years of the 

experiment, and it measured an average of just under 8% across treatments. Most of 

the soil organic matter input comes from root litter, even though some of the surface 

litter may eventually form soil organic matter after decomposition (though grass litter 

is known to have very low decomposition rates (Cornelissen and Thompson 1997)). 

Lack of treatment effect on soil organic matter content of the microcosms may be 

indicative of non-responsiveness of root growth to treatment, or a physical restriction 

on root growth by pot size. 

8.3. Community water use 

Three direct methods of measurement viz., evapotranspiration by lysimetry, change in 

pot mass, and soil water content, were used to assess treatment effect on community 

water use, as discussed in Chapter 5. Canopy water vapour exchange (Chapter 6) was 

also measured to assess community evapotranspiration. A further indirect assessment 

of treatment effect was inferred from gas exchange measurements of canopy water 
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vapour fluxes. Overall, elevated C02 reduced community evapotranspiration, and the 

highest recorded cumulative reduction was 12% under elevated C02 + MAR relative 

to a 10.2% reduction under elevated CO2 + 80%MAR in the fIrst year. It is 

noteworthy that maximum reduction in evapotranspiration occurred at elevated CO2 + 

MAR in all three years of study, as did maximum enhancement of biomass. Even 

though cumulative evapotranspiration seemed higher in the second year relative to the 

fIrst year, WUE was higher. The lowest reduction in evapotranspiration was recorded 

in the third year. 

Reduction of community evapotranspiration under elevated C02 is a culmination of 

several phenomena operating at different scales of community organisation (leaf 

stomatal conductance, leaf transpiration, sap flow, energy balance etc) and sometimes 

logistics do not permit assessment of all of these parameters in a single study. But, 

analysis of data in the literature shows trends of positive effects of elevated CO2 on 

these various parameters that serve as indicators of community water use. The 

tallgrass prairie has been extensively studied in this regard, and reductions in stomatal 

conductance, canopy conductance, sap flow and evapotranspiration have been 

measured (Ham et al. 1995) as well as reductions in transpiration (Bremer et al. 

1996). A 22% reduction in ET was measured in the tallgrass prairie relative to the 

10% measured in the current study. In a model grassland community derived from the 

Negev in Israel, Griinzweig and Komer (2001) measured 2% reduction in ET under 

an elevated C02 treatment of 400 ppm and 11 % reduction under 600 ppm. 

Reduction in ET resulted in higher volumetric soil water content measured under 

elevated CO2 in the current study, and the trend was further confirmed by a 

measurable increase in mass of plant pots due to water accumulation in the soil. Soil 

water content was found to increase with soil depth, hence the soil in the rooting layer 

was found to be on average 20% wetter than soil on the surface under elevated C02. 

Improved soil water status of 10-28% was measured in a study using grassland 

assemblages (Volk et al. 2000). Deep drainage has also been observed to increase 

under elevated CO2 in some grassland studies as a consequence of soil water 

accumulation under elevated CO2 (Jackson et al. 1998; Griinzweig and Komer 2001), 

especially during the wetter part of the growing season and not during the drier part of 

the growing season (Griinzweig and Komer 2001). In the current study, drainage loss 
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was measured only when water application was in excess of the equivalent of 25mm 

rainfall event during the first year. Treatment effects on drainage loss were not 

significant. Drainage was subsequently not measured in the second and third growing 

seasons. 

The effect of swapping water treatments between MAR and l20%MAR and vice 

versa in the third year were not profound, and even a reduction in biomass production 

that occurred in the last year could not be attributed to such an experimental 

manipulation. 

8.5. Concluding remarks 

Five key questions of the study are reiterated at the beginning of this Chapter, 

followed by an account of how the results interrelate. This section of the thesis uses 

the synthesised data to provide answers to the key questions. The data provides 

satisfactory answers to some questions, while other questions cannot be sufficiently 

answered. 

The first two questions address impacts of elevated CO2 on above-ground production 

and canopy structure, and answering them requires an integration of leaf-level gas 

exchange and whole-plant characteristics (phenology, plant structure and biomass 

allocation patterns). Measurements were done predominantly at the community level 

relative to the leaf-level because earlier greenhouse and field studies by Wand et al. 

(2001, 2002) extensively characterised leaf-level responses of species used in this 

study. Results of leaf gas exchange (Chapter 7) show a down regulation of 

photosynthesis in the C3 grass Alloteropsis, and in a C4 grass Andropogon under 

elevated CO2. Photosynthetic up regulation under elevated CO2 was measured in the 

C4 grasses Eragrostis, Sporobolus, and Themeda. In tum, the species that underwent 

photosynthetic down regulation (Alloteropsis and Andropogon), contributed less to 

community biomass production under elevated C02, while two of the species that 

underwent photosynthetic up regulation (Sporobolus and Themeda) contributed more 

than 50% of community above-ground production. Biomass production of Eragrostis 

was intermediate. Canopy structure was mostly influenced by species that contributed 

higher biomass in the higher layers of the canopy viz. Sporobolus and Themeda. 

Placement of leaf biomass in upper canopy layers enabled better light harvesting. The 
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competitive edge of Sporobolus and Themeda was further attributed to early sprouting 

under elevated C02, and all of these factors together culminated in a 12% increase in 

community above-ground production under elevated CO2. 

The response to elevated C02 of above-ground production was higher under MAR 

than other watering treatments (80% MAR and 120%MAR). This point answers the 

third question of whether responses to elevated CO2 would be influenced by an 

interaction with variable watering treatment. 

Data on species-level responses does not sufficiently answer the third question on 

effects of elevated C02 on proportional representation of photosynthetic functional 

types (C3 and the three variants of the C4). Clearly, the C3 species (Alloteropsis) did 

not respond positively to elevated CO2, but one of the C4 species (Andropogon) did 

not respond positively to elevated CO2. More importantly, Andropogon and Themeda 

both belong to the NADP-me C4 subtype, yet their biomass production, leaf gas 

exchange, sprouting and flowering were different. 

The fourth question addresses long-term impacts of elevated CO2 on community 

water use. Evidently, the data suggest that community level water use of South 

African C4-dominated grasslands will be improved under elevated C02 as 

consequences of improved leaf-level water use efficiency and 12% reduction in 

community evapotranspiration. As a result, 20% higher soil water content was 

measured in microcosm communities exposed to elevated CO2, even at the end of the 

growing season. A study conducted by Stock et al. (2004) at a South African natural 

CO2 spring (occurring at the field site from which experimental material for the 

current study was derived) measured higher soil water content at end of growing 

season at the sites closest to the CO2 source, for three consecutive years. Whether 

similar responses of improved community water use will be realised at a landscape 

level depends on a number of other interacting environmental parameters. It would 

also be interesting to do an analysis of catchment run-off data of the past 50 years to 

see if any trends emerge that could perhaps be associated with increases in 

concentrations of atmospheric C02. 
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In conclusion, the data suggest that the long-term implications (key question 5) for 

elevated C02 on South African grasslands will be characterised by enhanced water 

use efficiency and biomass production. However, a response of increased biomass 

production may be transient while water use efficiency may be longer lasting. 

Implications of effects of elevated C02 on C4-dominated grasslands at a landscape 

scale, particularly in their role as water catchments, may be greatly influenced by 

catchment management styles. This study represents the first investigation on 

combined effects of elevated CO2 and controlled water treatment on a South African 

natural grassland community. 
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