UNIVERSITY OF HAWAI'I AT MĀNOA College of Tropical Agriculture and Human Resources

COOPERATIVE EXTENSION

The Importance of Copper in Beef Cattle Diets

LEG Virtual Field Day

Savannah Katulski, MS

Livestock Extension, University of Hawaii, CTAHR

katulski@hawaii.edu

COOPERATIVE EXTENSION

UNIVERSITY OF HAWAI'I AT MĀNOA College of Tropical Agriculture and Human Resources

Minerals: Macro vs. Micro

- Macrominerals: Ca, P, Mg, S, Na/Cl
 Needed in larger quantities
- Microminerals: Cr, Co, <u>Cu</u>, I, Mn, Mo, Se, Zn
 Needed in trace amounts

Mineral Sources for Beef Cattle

COOPERATIVE EXTENSION

University of Hawai'i at Mānoa College of Tropical Agriculture and Human Resources

Following phosphorus, copper is often the 2nd most limiting mineral nutrient in grazing cattle nutrition

COOPERATIVE EXTENSION

University of Hawai'i at Mānoa College of Tropical Agriculture and Human Resources

Role of Copper

- Enzyme function
- Cardiovascular function
- Immune function
- Iron absorption

COOPERATIVE EXTENSION

Reproduction

Bone Formation

McDowell, 2003

University of Hawai'i at Mānoa College of Tropical Agriculture and Human Resource

Copper and Reproduction

Summary: 87% of cows which aborted calves were Cu deficient whereas only 12% of the cows which produced live calves were Cu deficient

COOPERATIVE EXTENSION

Copper Deficient Cows

Aborted Cows Calved Cows

Sakhaee E. and S. Kazeminia, 2011

Copper and Reproduction

Summary: Cows treated with copper sulfate (injected) had greater (85%) conception rates vs cows which received no copper supplementation (36%)

No Supplementation Supplemented

Garcia, J. D. et al., 2006

0

Copper and Reproduction

<u>Summary:</u> Cows treated with copper sulfate displayed estrus more effectively (83%) than those not provided copper (60%)

■ No Copper ■ Copper

COOPERATIVE EXTENSION

Garcia, J. D. et al., 2006

- Copper deficiency can impact:
 - Calving rates
 - Conception rates

COOPERATIVE EXTENSION

Ability to express estrus

• Limited data on cattle specific impacts, but many studies report reproductive failure during copper deficiency

University of Hawai'i at Mānoa College of Tropical Agriculture and Human Resources

Copper and Immunity

Summary: After an immune challenge from infectious bovine rhinotracheitis virus (IBRV), calves fed a copper-sufficient diet had numerically greater serum titers.

COOPERATIVE EXTENSION

Serum IBRV Titer

Copper Sufficient Copper Deficient

Stabel et al., 1993

Copper and Immunity

<u>Summary:</u> After an immune challenge from *Mannheimia hemolytica*, calves fed a copper-sufficient diet had numerically greater serum titers.

COOPERATIVE EXTENSION

Serum M. hemolytica

Copper Sufficient Copper Deficient

Stabel et al., 1993

Copper and Immunity

- Copper deficiency impacts:
 - Initial immune response
 - Efficacy of vaccines
 - Future immune responses
 - Immune cell regulation
 - Inflammatory response

COOPERATIVE EXTENSION

University of Hawai'i at Månoa College of Tropical Agriculture and Human Resources

Types of Copper Deficiency

- Primary
 - Insufficient copper in the diet, i.e. forage, grain, mineral, etc. not providing ~ 10 ppm Cu
- Secondary
 - Insufficient copper due to antagonists in the diet
 - Examples: Sulfur, iron, and molybdenum

Copper Antagonists

When it comes to minerals and ruminants, what goes in isn't always useable by the animal

- Copper & Iron
 - Cu=Fe absorption but...
 - Impedes Cu at 200 ppm
- Copper & Molybdenum
 - Often associated with sulfur
 - Thiomolybdate-copper complexes

Copper & Sulfur

Copper sulfide & copper bound thiomolybdates

			Antagonis		
Copper Antagonist	Deficient	Ideal	Marginal	High	MTC*
Iron (ppm)	< 50	50- 200	> 200 -400	> 400	1000
Molybdenum (ppm)	Not Established	< 1	1-3	> 3	5
Sulfur (% DM)	< 0.10	0.15 – 0.20	> 0.20 – 0.30	> 0.30	0.40

- *Maximum Tolerable Concentration
- ** Levels above these can potentially adversely affect copper availability.

Characteristics of Hawaii's Forages

Season	Sample Size	% DM	% CP	% Ca	% P	% Mg	% K	% Na	Fe ppm	Zn ppm	Cu ppm	Mn ppm	Mo ppm	% S	Ca:P	Cu:Mo
10.11-11.11	n=9	23.0	15.3	0.3	0.4	0.3	3.0	0.1	458.0	48.3	8.9	144.7	0.3	0.2	0.9	69.6
Fall		2.1	2.3	0.0	0.1	0.0	0.6	0.0	327.3	7.4	0.8	43.0	0.1	0.0	0.2	33.7
12.11-2.12 Winter	n=9	24.1	20.4	0.4	0.4	0.3	2.3	0.1	492.7	38.4	11.2	127.6	0.9	0.2	1.1	13.4
		6.7	2.6	0.0	0.0	0.0	0.1	0.1	298.0	8.9	1.4	46.7	0.3	0.1	0.1	3.1
3.12-5.12 Spring	n=6	28.8	20.1	0.4	0.3	0.3	2.3	0.1	810.8	36.7	10.5	130.5	0.5	0.3	1.2	29.0
		1.7	1.7	0.0	0.0	0.0	0.5	0.0	855.3	11.5	1.9	83.9	0.3	0.0	0.1	20.6
6.12-8.12 Summer	n=9	23.8	18.9	0.3	0.3	0.3	2.7	0.1	180.8	38.1	11.3	225.1	0.1	0.2	1.0	101.0
		5.2	1.1	0.0	0.0	0.0	0.4	0.1	49.3	5.9	1.3	63.0		0.0	0.2	39.4

Management Strategies

- Forage testing
 - At a MINIMUM Annually
 - Seasonally
- Develop a supplementation strategy
 - Salt alone is NOT the answer
- Determine the best supplement for your cattle and available forage
 - Organic vs inorganic minerals
 - Delivery methods

Thank you!

katulski@hawaii.edu

COOPERATIVE EXTENSION

UNIVERSITY OF HAWAI'I AT MĂNOA College of Tropical Agriculture and Human Resources